Enzyme Classification and Naming

Enzyme Class and Reaction*	Subclass or Common Name	Reaction*
Oxidoreductase	Dehydrogenase	Transfer of a hydride ion
Oxidation-reduction reaction	Oxidase	O ₂ is the electron acceptor
Transferase	Kinase	Transfer of a phosphoryl group
Transfer of a functional group		between a nucleotide (e.g. ATP) and
from one compound to another		another compound
	Aminotransferase	Transfer of an amino group between
	(Transaminase)	compounds
Hydrolase	Phosphatase	Hydrolysis of a single bond between
Hydrolysis reaction (cleavage of		a compound and a phosphoryl group
a single bond via addition of		(releasing inorganic phosphate, Pi)
water)	Peptidase	Hydrolysis of a peptide bond
	Protease	
	Proteinase	
	Glycosidase	Hydrolysis of a glycosidic bond
	Lipase	Hydrolysis of a bond in a lipid
Lyase	Synthase	Forming a single bond between two
Group elimination to form a		compounds, one of which loses a
double bond, or		double bond
Breaking a single bond to form		
two products, one of which has a		
new double bond		
Isomerase	Mutase	The apparent migration within a
Internal rearrangement or		molecule of a functional group from
isomerization		one position to another position
Ligase	Synthetase	Formation of a new bond coupled to
Bond formation coupled to		ATP (or GTP, etc.) hydrolysis
nucleotide triphosphate (ex: ATP,		
GTP,) hydrolysis		

^{*}Remember that enzymes catalyze a reaction in either direction. A reaction going in reverse (relative to the direction described) will also be catalyzed by an enzyme of that class.