Michaelis-Menten (steady-state) Kinetics

The Michaelis-Menten model for enzyme kinetics presumes a simple 2-step reaction:

<u>Step 1</u>: Binding – the substrate binds to the enzyme

<u>Step 2</u>: Catalysis – the substrate is converted to product and released

(Note that enzymes not matching this reaction scheme may still show similar kinetics.)

The Michaelis-Menten equation shows how the initial rate of this reaction, V_o , depends on the substrate concentration, [S]: $V_o = \frac{V_{max}[S]}{K_m + [S]}$

Several simplifying assumptions allow for the derivation of the Michaelis-Menten equation:

- (1) The binding step (E + S = ES) is fast, allowing the reaction to quickly reach equilibrium ratios of [E], [S], and [ES]. The catalytic step (ES = E + P) is slower, and thus rate-limiting.
- (2) At early time points, where initial velocity (V_o) is measured, $[P] \approx 0$.
- (3) ES immediately comes to steady state, so [ES] is constant (throughout the measured portion of the reaction).
- (4) $[S] \gg [E_T]$, so the fraction of S that binds to E (to form ES) is negligible, and [S] is constant at early time points.
- (5) The enzyme exists in only two forms: free (E), and substrate-bound (ES). Thus, the total enzyme concentration (E_T) is the sum of the free and substrate-bound concentrations: $[E_T] = [E] + [ES]$

A derivation of the Michaelis-Menten equation shows how to use the above assumptions to describe the rate of the enzyme-catalyzed reaction in terms of measurable quantities:

From (1), we know the overall rate of the reaction is determined by the rate of the catalytic step:	$V_o = k_2[\text{ES}] - k_{-2}[\text{E}][\text{P}]$
From (2), the second term equals zero, so we are left with:	$V_o = k_2[\mathrm{ES}]$
We want to describe V_o in measurable quantities, but [ES] is not easy to measure. However [S] is known, from (4). To express [ES] in terms of [S], we can start from (3):	Rate of formation of ES = Rate of breakdown of ES $k_1[E][S] + k_{-2}[E][P] = k_{-1}[ES] + k_2[ES]$
From (2), this simplifies to:	$k_1[E][S] = k_{-1}[ES] + k_2[ES]$
We can factor out [ES] and group the rate constants:	$k_1[E][S] = [ES]\{k_{-1} + k_2\}$
	$[E][S] = [ES]\left\{\frac{k_{-1} + k_2}{k_1}\right\}$
This ratio of rate constants is defined as the Michaelis Constant, K_m :	$K_m = \frac{k_{-1} + k_2}{k_1}$
Substituting in K_m for the rate-constant ratio gives:	$[\mathbf{E}][\mathbf{S}] = [\mathbf{ES}]K_m$
Just as [ES] is not easy to measure, [E] is also not easy to measure. However, $[E_T]$ is known. Rearranging (5) for [E] and substituting, we get:	$\{[\mathbf{E}_{\mathrm{T}}] - [\mathbf{E}\mathbf{S}]\}[\mathbf{S}] = [\mathbf{E}\mathbf{S}]K_m$
We are still trying to get an expression for [ES] in terms of measurable quantities. Here we can multiply, rearrange, factor, and divide, to get [ES] in terms of $[E_T]$, $[S]$, and K_m :	$[E_{T}][S] - [ES][S] = [ES]K_{m}$ $[E_{T}][S] = [ES]K_{m} + [ES][S]$ $[E_{T}][S] = [ES]\{K_{m} + [S]\}$ $\frac{[E_{T}][S]}{K_{m} + [S]} = [ES]$
Now we can substitute our expression for [ES] into the rate equation:	$V_o = k_2[\text{ES}] = \frac{k_2[\text{E}_{\text{T}}][\text{S}]}{K_m + [\text{S}]}$
At high [S] (when [S] >>> K_m), nearly all enzyme will have substrate bound, and [ES] approaches [E _T]. This is when V_o approaches V_{max} . Since $V_o = k_2$ [ES], (Or, mathematically, when [S] >>> K_m , K_m is negligible, and the equation simplifies to:)	$V_{max} = k_2[E_{\rm T}]$ $\left(V_{max} = \frac{k_2[E_{\rm T}][S]}{[S]} = k_2[E_{\rm T}]\right)$
Substituting V_{max} in to the rate equation gives the Michaelis-Menten equation:	$V_o = \frac{V_{max}[S]}{K_m + [S]}$

 $E+S \xrightarrow{k_1} ES \xrightarrow{k_2} E+P$

Binding

Catalysis