
The oxidation of acetyl-CoA to CO₂ in the TCA cycle generates reduced cofactors

Reduced redox cofactors produced in glucose oxidation are used to make ATP

TABLE 16-1

Stoichiometry of Coenzyme Reduction and ATP Formation in the Aerobic Oxidation of Glucose via Glycolysis, the Pyruvate Dehydrogenase Complex Reaction, the Citric Acid Cycle, and Oxidative Phosphorylation

Reaction	Number of ATP or reduced coenzyme directly formed	Number of ATP ultimately formed*
Glucose → glucose 6-phosphate	−1 ATP	-1
Fructose 6-phosphate	−1 ATP	-1
2 Glyceraldehyde 3-phosphate 2 1,3-bisphosphoglycerate	2 NADH	3 or 5 [†]
2 1,3-Bisphosphoglycerate 2 3-phosphoglycerate	2 ATP	2
2 Phosphoenolpyruvate 2 pyruvate	2 ATP	2
2 Pyruvate 2 acetyl-CoA	2 NADH	5
2 Isocitrate \longrightarrow 2 α -ketoglutarate	2 NADH	5
2 $lpha$ -Ketoglutarate \longrightarrow 2 succinyl-CoA	2 NADH	5
2 Succinyl-CoA 2 succinate	2 ATP (or 2 GTP)	2
2 Succinate 2 fumarate	2 FADH ₂	3
2 Malate 2 oxaloacetate	2 NADH	5
Total		30-32

^{*}This is calculated as 2.5 ATP per NADH and 1.5 ATP per FADH₂. A negative value indicates consumption.

[†]This number is either 3 or 5, depending on the mechanism used to shuttle NADH equivalents from the cytosol to the mitochondrial matrix; see Figures 19–30 and 19–31.

How are reduced redox currencies (NADH, FADH₂) used to make ATP?

- Electrons spontaneously move from compounds of lower reduction potential to higher reduction potential
 - Reduction potential is a measure of electron affinity
 - Electron transfers are exergonic, releasing free energy
- The exergonic transfer of electrons can be coupled to endergonic processes to make them favorable
 - The transfer of electrons from NADH (or FADH₂) to O₂ is highly exergonic
 - ATP synthesis from ADP and P_i is endergonic
 - Electron transfers are coupled to ATP synthesis through the creation of an electrochemical proton gradient

Electron transfers drive H⁺ gradient formation; gradient potential drives ATP synthesis

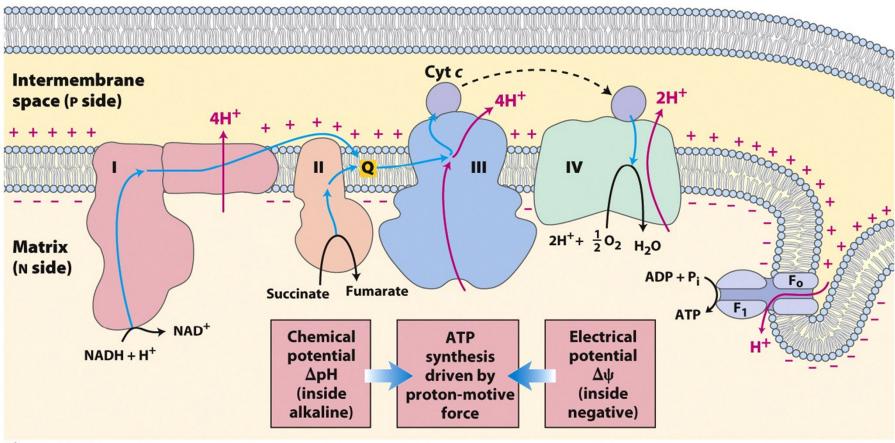
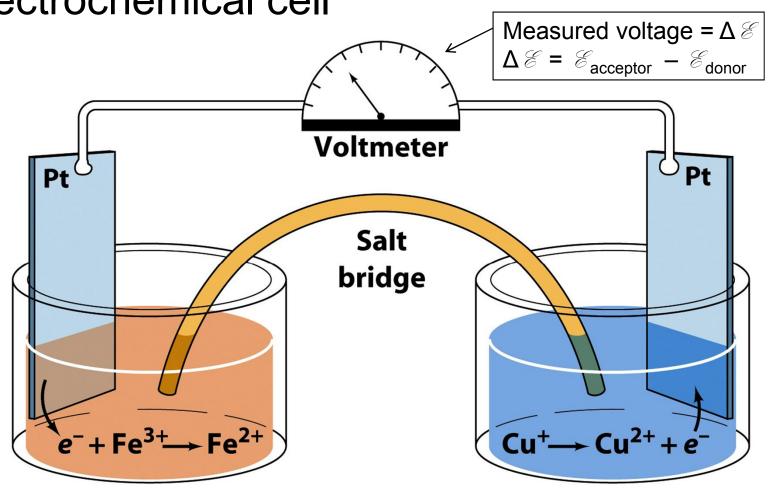



Figure 19-19
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Reduction potentials are measured using an electrochemical cell

Under standard conditions, measurement against the standard hydrogen half cell (1M H⁺, 1ATM H₂) gives standard \mathscr{E} (\mathscr{E} ° \equiv 0 for H⁺ + e⁻ \rightarrow ½ H₂)

Table 14-5 Standard Reduction Potentials of Some Biochemically Important Half-Reactions

Half-Reaction	&°′(V)
$\frac{1}{2}O_2 + 2H^+ + 2e^- \Longrightarrow H_2O$	0.815
$NO_{3}^{-} + 2H^{+} + 2e^{-} \iff NO_{2}^{-} + H_{2}O$	0.42
Cytochrome a_3 (F e ³⁺) + e ⁻ \Longrightarrow cytochrome a_3 (F e ²⁺)	0.385
$O_2(g) + 2H^+ + 2e^- \Longrightarrow H_2O_2$	0.295
Cytochrome a (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome a (Fe ²⁺)	0.29
Cytochrome c (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome c (Fe ²⁺)	0.235
Cytochrome c_1 (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome c_1 (Fe ²⁺)	0.22
Cytochrome b (Fe ³⁺) + $e^- \rightleftharpoons$ cytochrome b (Fe ²⁺) (mitochondrial)	0.077
Ubiquinone + 2 H ⁺ + 2 e [−] ← ubiquinol	0.045
Fumarate [−] + 2 H ⁺ + 2 e [−] ⇒ succinate [−]	0.031
$FAD + 2H^{+} + 2e^{-} \iff FADH_{2}$ (in flavoproteins)	~0.
Oxaloacetate ⁻ + 2 H ⁺ + 2 e ⁻ \Longrightarrow malate ⁻	-0.166
Pyruvate [−] + 2 H ⁺ + 2 e [−] ← lactate [−]	-0.185
Acetaldehyde + 2 H ⁺ + 2 e [−] ← ethanol	-0.197
$FAD + 2H^+ + 2e^- \iff FADH_2$ (free coenzyme)	-0.219
$S + 2H^+ + 2e^- \iff H_2S$	-0.23
Lipoic acid + 2 H ⁺ + 2 e [−]	-0.29
$NAD^+ + H^+ + 2e^- \Longrightarrow NADH$	-0.315
$NADP^{+} + H^{+} + 2e^{-} \Longrightarrow NADPH$	-0.320
Cysteine disulfide + 2 H + + 2 e [−] ⇒ 2 cysteine	-0.340
Acetoacetate $+2H^+ + 2e^- \iff \beta$ -hydroxybutyrate	-0.346
$H^+ + e^- \rightleftharpoons \frac{1}{2}H_2$	-0.421
$SO_4^{2-} + 2H^+ + 2e^- \iff SO_3^{2-} + H_2O$	-0.515
Acetate [−] + 3 H ⁺ + 2 e [−] ← acetaldehyde + H ₂ O	-0.581

Source: Mostly from Loach, P.A., In Fasman, G.D. (Ed.), Handbook of Biochemistry and Molecular Biology (3rd ed.), Physical and Chemical Data, Vol. I, pp. 123–130, CRC Press (1976).