‘Metabolic flux’ describes the rate of flow of
intermediates through a metabolic pathway



AG, determined by measuring [metabolites],
reveals the rate-limiting steps of a pathway

Table 15-1

AG°" and AG for the Reactions of Glycolysis in Heart
Muscle®

AG” AG
Reaction Enzyme (kJ - mol™) (kJ - mol™)
1 Hexokinase —20.9 —27.2
2 PGI +2.2 -1.4
3 PFK —17.2 —25.9
4 Aldolase +22.8 —5.9
5 TIM +7.9 ~0
6+ 7 GAPDH + PGK —16.7 —-1.1
8 PGM +4.7 —0.6
9 Enolase —3.2 —-24
10 PK —23.0 —-13.9

“Calculated from data in Newsholme, E.A. and Start, C., Regulation in Metabolism, p. 97,
Wiley (1973).



PFK is the major regulatory enzyme of
glycolysis in muscle (F6P + ATP — F-1,6-BP + ADP)

Active site:
F-1,6-BP &
ADP bound

Homotetramer (here,
2 subunits are shown)

Each subunit has
catalytic and
regulatory sites

Positive effectors:
— FO6P (substrate)

— ADP, AMP

— F-2,6-BP

* Negative effectors:

— ATP
— citrate

Regulatory site:
ADP bound




ATP, ADP, or AMP can bind at the same
regulatory site and influence PFK activity

Phosphofructokinase activity
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The R-state of PFK promotes binding of
FOP; the T-state has low affinity for F6P

In T-state (blue), charge
repulsion between Glu &
FGP disfavors binding

Positive effector;
stabilizes R-state

Shift to R-state (pink) creates
salt bridge between Arg & FG6P,
promoting binding

Negative effector
(non-biological);
stabilizes T-state



Gluconeogenesis is a pathway in which
glucose is synthesized from 2-4C precursors

Many organisms and many cell types require a constant
supply of glucose (ex: neurons, red blood cells)

In humans, glucose can be synthesized from pyruvate
(or lactate, or oxaloacetate, or certain amino acids)
through this pathway (mainly occurring in the liver)

Uses many of the same enzymes as glycolysis — those
that catalyze reversible reactions

For irreversible steps of glycolysis, uses other reactions
(and other enzymes)

Opposite regulation vs. glycolysis
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Phosphatases remove the phophoryl groups
added by hexokinase and PFK
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Two energy-requiring steps reverse the
action of pyruvate kinase
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Pyruvate carboxylase uses the energy of
ATP hydrolysis to drive a carboxylation

o O Pyruvate o O O
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PEPCK couples decarboxylation and NTP
hydrolysis to PEP formation
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From glycolysis, pyruvate has multiple
Ism

options for further metaboli

glycolysis

Aerobic
(slow, good energy yield)

oxidative
phosphorylation

cycle

co, | | H0
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Glucose

Pyruvate

citric acid

N\

homolactic
fermentation

Lactate

Anaerobic
(fast, low
energy yield)

alcoholic
fermentation

co, Ethanol




Different color in muscle can reflect different
levels of aerobic vs. anaerobic metabolism
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In homolactic fermentation, lactate DH
reduces pyruvate to regenerate NAD”
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AG'°=- 25.1 kJ/mol



A hydride from NADH is transferred directly
to pyruvate’s carbonyl carbon
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Yeast carry out alcoholic (ethanolic)
fermentation, producing CO, and ethanol




Ethanolic fermentation converts pyruvate to
ethanol in two steps
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Pyruvate decarboxylase catalyzes the
decarboxylation of pyruvate to acetaldehyde
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Decarboxylation does not happen without
catalysis
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The cofactor TPP functions as an electron
sink to stabilize carbanion intermediates
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TPP catalyzes the decarboxylation of a-keto
acids
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Alcohol DH regenerates NAD+ through the
reduction of acetaldehyde to ethanol
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A hydride from NADH is transferred directly

to acetaldehyde’s carbonyl carbon
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From glycolysis, pyruvate has multiple
Ism

options for further metaboli

glycolysis

Aerobic
(slow, good energy yield)

oxidative
phosphorylation
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Oxidation of glucose releases more free
energy & yields more ATP than fermentation

Fermentation: 2 ATP (per glucose)
glucose — 2 lactate + 2H* AG'" =-196 kd/mol
glucose — 2C0O, + 2 ethanol AG'® = -235 kd/mol

Oxidation: up to 32 ATP (per glucose)
glucose + 60, » 6CO, + 6H,O0 AG"™ =-2850 kd/mol



