'Metabolic flux' describes the rate of flow of intermediates through a metabolic pathway

 ΔG , determined by measuring [metabolites], reveals the rate-limiting steps of a pathway

Table 15-1	$\Delta {f G}^{\circ\prime}$ and $\Delta {f G}$ for the Reactions of Glycolysis in Heart Muscle ^{<i>a</i>}		
Reaction	Enzyme	∆G°′ (kJ · mol ^{−1})	∆ <i>G</i> (kJ · mol ^{−1})
1	Hexokinase	-20.9	-27.2
2	PGI	+2.2	-1.4
3	PFK	-17.2	-25.9
4	Aldolase	+22.8	-5.9
5	ТІМ	+7.9	~0
6 + 7	GAPDH + PGK	-16.7	-1.1
8	PGM	+4.7	-0.6
9	Enolase	-3.2	-2.4
10	РК	-23.0	-13.9

^aCalculated from data in Newsholme, E.A. and Start, C., *Regulation in Metabolism*, p. 97, Wiley (1973).

PFK is the major regulatory enzyme of glycolysis in muscle (F6P + ATP \rightarrow F-1,6-BP + ADP)

- Homotetramer (here, 2 subunits are shown)
- Each subunit has catalytic and regulatory sites
- Positive effectors:
 - F6P (substrate)
 - ADP, AMP
 - F-2,6-BP
- Negative effectors:
 - ATP
 - citrate

ATP, ADP, or AMP can bind at the same regulatory site and influence PFK activity

The R-state of PFK promotes binding of F6P; the T-state has low affinity for F6P

Gluconeogenesis is a pathway in which glucose is synthesized from 2-4C precursors

- Many organisms and many cell types require a constant supply of glucose (ex: neurons, red blood cells)
- In humans, glucose can be synthesized from pyruvate (or lactate, or oxaloacetate, or certain amino acids) through this pathway (mainly occurring in the liver)
- Uses many of the same enzymes as glycolysis those that catalyze reversible reactions
- For irreversible steps of glycolysis, uses other reactions (and other enzymes)
- Opposite regulation vs. glycolysis

Phosphatases remove the phophoryl groups added by hexokinase and PFK

Two energy-requiring steps reverse the action of pyruvate kinase

Pyruvate carboxylase uses the energy of ATP hydrolysis to drive a carboxylation

PEPCK couples decarboxylation and NTP hydrolysis to PEP formation

From glycolysis, pyruvate has multiple options for further metabolism

Different color in muscle can reflect different levels of aerobic vs. anaerobic metabolism

slow-twitch muscle fiber

Lots of heme-containing mitochondria, used in aerobic metabolism

fast-twitch muscle fiber

Fewer mitochondria; heavy reliance on anaerobic metabolism In homolactic fermentation, lactate DH reduces pyruvate to regenerate NAD⁺

A hydride from NADH is transferred directly to pyruvate's carbonyl carbon

Yeast carry out alcoholic (ethanolic) fermentation, producing CO₂ and ethanol

Ethanolic fermentation converts pyruvate to ethanol in two steps

Pyruvate decarboxylase catalyzes the decarboxylation of pyruvate to acetaldehyde

Decarboxylation does not happen without catalysis

© 2008 John Wiley & Sons, Inc. All rights reserved.

unstable carbanion intermediate

The cofactor TPP functions as an electron sink to stabilize carbanion intermediates

TPP catalyzes the decarboxylation of α -keto acids

© 2008 John Wiley & Sons, Inc. All rights reserved.

Resonance-stabilized carbanion

Resonance-stabilized carbanion

Alcohol DH regenerates NAD+ through the reduction of acetaldehyde to ethanol

A hydride from NADH is transferred directly to acetaldehyde's carbonyl carbon

© 2008 John Wiley & Sons, Inc. All rights reserved.

From glycolysis, pyruvate has multiple options for further metabolism

Oxidation of glucose releases more free energy & yields more ATP than fermentation

Fermentation: 2 ATP (per glucose)glucose \rightarrow 2 lactate + 2H+ $\Delta G^{\circ} = -196$ kJ/molglucose \rightarrow 2CO2 + 2 ethanol $\Delta G^{\circ} = -235$ kJ/mol

Oxidation: up to 32 ATP (per glucose) glucose + $6O_2 \rightarrow 6CO_2 + 6H_2O \quad \Delta G^{\circ} = -2850 \text{ kJ/mol}$