The preparatory phase
uses 2 ATP and
converts 1 glucose to
2 molecules of GAP

Glucose + 2ATP - 2GAP + 2ADP + 2H*
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Step 1. Hexokinase catalyzes a phosphoryl
transfer from ATP to glucose

‘Activates’ glucose
&
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’ (o) . ATP ADP + H*
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OH H \Mg- g
HO OH hexokinase HO
H OH H OH
Glucose Glucose 6-phosphate
Keeps [glucose] low in the cell, AG'O = —16.7 kJ/moI

so glucose can always move
down its gradient into the cell




Mg?* offsets negative charge on phosphates
of ATP, allowing nucleophilic attack
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Hexokinase undergoes a conformational
change on binding glucose (induced fit)




Step 2: PGI catalyzes the isomerization of
the aldose G6P to the ketose F6P

6
CH,0P0;*~ .
CH,OPO;*~
1
H H O._ CH,OH
4 1 3 > 5 H HO 2
HO OH Phosphoglucose H OH
5 iIsomerase a 3
H OH OH H
Glucose 6-phosphate Fructose 6-phosphate
Moving the carbonyl to C2 prepares AG'° = 1.7 kJ/mol

the molecule for cleavage in step 4



General acid-base catalysis promotes
Isomerization via an enediol intermediate
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Step 3: PFK catalyzes the second
phosphoryl transfer from ATP

Further ‘activates’ the sugar

1 ATP used
6 6
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‘KH HO N - ‘NH HO
H OH phosphofructokinase-1 H OH
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Fructose 6-phosphate Fructose 1,6-bisphosphate

« This step ‘commits’ the hexose
to being broken down

* Phosphorylations become even:
at both ends of the molecule

AG’° = —14.2 kJ/mol




Step 4: Aldolase catalyzes the aldol
cleavage of the hexose into 2 trioses

Dihydroxyacetone

phosphate (DHAP)
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(Non-enzymatic) base-catalyzed aldol cleavage
forms an unstable enolate intermediate
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Aldolase promotes the reaction
by forming a Schiff base instead:
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Schiff base formation on aldolase involves
covalent and general acid-base catalysis
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General acid-base catalysis
and electron-poor Schiff base
promote cleavage
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Aldolase releases 2" product by reversing
Schiff-base formation reactions

Proton
exchange
with
solution
restores
enzyme.
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hydrolyzed in
reverse of Schiff
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2 trioses result from aldolase cleavage
because hexose carbonyl is at C2

Dihydroxyacetone
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Triose phosphate isomerase interconverts
the products of the aldolase reaction

Mechanism? 0O H
N/
(IZHZOH (IZ
(|:=0 t‘riqse phosphate H(I:OH
CH,0PQ,2 '“OMmerase CH,O0P0,2"
Dihydroxyacetone Glyceraldehyde
phosphate 3-phosphate
Two of the same molecule can AG'°= 7.5 kJ/mol

continue through glycolysis:
more efficient than two different



Aldose-ketose isomerization occurs through
an enediol intermediate
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Triose phosphate isomerase (TIM) has a
"TIM barrel’ fold, as do many other enzymes

Including
aldolase,
enolase,
pyruvate
kinase

Convergent
or divergent
evolution?



The preparatory phase Glucose

uses 2 ATP and ﬂ phosphorylation
G6P

converts 1 glucose to
2 molecules of GAP

_®

isomerization
Glucose + 2ATP - 2GAP + 2ADP + 2H*
F6P —(P)
Derived from phosphorylation
glucose carbons
4 or 3 H=Cc=0

5or2 H—zc:—OH GAP ®— FBP —®

6 or 1 *CH,—0—(P)
l cleavage
Subsequent reactions
of glycolysis
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