Metabolism encompasses degradative and biosynthetic pathways

• **Catabolism:** reactions that break down nutrients and collect released energy and reducing power

Catabolic pathways are convergent

- Anabolism: reactions that synthesize needed compounds, using stored energy and reducing power
 - Anabolic pathways are divergent

TABLE 13–2	Relationship between Equilibrium Constants and Standard Free-Energy Changes of Chemical Reactions		
	∆G′°		
K' _{eq}	(kJ/mol)	(kcal/mol)*	
10 ³	-17.1	-4.1	
10 ²	-11.4	-2.7	
10 ¹	-5.7	-1.4	
1	0.0	0.0	
10 ⁻¹	5.7	1.4	
10 ⁻²	11.4	2.7	
10 ⁻³	17.1	4.1	
10 ⁻⁴	22.8	5.5	
10 ⁻⁵	28.5	6.8	
10 ⁻⁶	34.2	8.2	

TABLE 13–3	Relationships among K'_{eq} , $\Delta G'^{\circ}$, and the Direction of Chemical Reactions		
When <i>K'</i> _{eq} is	ΔG'° is	Starting with all components at 1 м, the reaction	
>1.0	negative	proceeds forward	
1.0	zero	is at equilibrium	
<1.0	positive	proceeds in reverse	

Table 13-3Lehninger Principles of Biochemistry, Fifth Edition© 2008 W. H. Freeman and Company

Energy currencies provide a common intermediate in energy transductions

The adenylates (ATP, ADP, AMP) are the primary energy currency

The ΔG of ATP hydrolysis is large and negative

- Reduced charge repulsion in products
- Better resonance stabilization of products

Products of phosphoanhydride hydrolysis have better resonance stabilization

© 2008 John Wiley & Sons, Inc. All rights reserved.

The ΔG of ATP hydrolysis is large and negative

- Reduced charge repulsion in products
- Better resonance stabilization of products
- More favored solvation of products
- $\Rightarrow \Delta G^{\prime \circ}$ is -30.5 kJ/mol
- Cells keep [ATP] relatively high
- $\Rightarrow \Delta G < -30.5 \text{ kJ/mol}$

TABLE 13-5Adenine Nucleotide, Inorganic Phosphate, and
Phosphocreatine Concentrations in Some Cells

	Concentration (mм)*				
	ATP	ADP [†]	AMP	P _i	PCr
Rat hepatocyte	3.38	1.32	0.29	4.8	0
Rat myocyte	8.05	0.93	0.04	8.05	28
Rat neuron	2.59	0.73	0.06	2.72	4.7
Human erythrocyte	2.25	0.25	0.02	1.65	0
<i>E. coli</i> cell	7.90	1.04	0.82	7.9	0

For practice: Calculate the ΔG of ATP hydrolysis in *E. coli*

ATP binding and hydrolysis drives muscle contraction

@ 2008 John Wiley & Sone Inc All rights recorved

Phosphoryl transfer from ATP drives many reactions (via coupling)

ΔG'° values of phosphate hydrolysis reflect 'phosphoryl transfer potential' (ptp)

Compound	$\Delta \boldsymbol{G}^{\circ\prime}(\mathbf{kJ}\cdot\mathbf{mol}^{-1})$	-60	Phosphoenolpyruvate
Phosphoenolpyruvate	-61.9		1,3-Bisphosphoglycerate
1,3-Bisphosphoglycerate	-49.4	<u> </u>	Phosphocreatine
$ATP (\to AMP + PP_{j})$	-45.6	nol	
Acetyl phosphate	-43.1	-40 ੨	- "High-energy" Fligh
Phosphocreatine	-43.1	sis (compounds
$ATP (\to ADP + P_i)$	-30.5	<u>v</u> –30	"Low-energy"
Glucose-1-phosphate	-20.9	hyd	phosphate Low
PP _i	-19.2	∫o	compounds ptp
Fructose-6-phosphate	-13.8	ິ ⊻10	Glucose-6-phosphate
Glucose-6-phosphate	-13.8		Glycerol-3-phosphate
Glycerol-3-phosphate	-9.2	0	

Other 'high-energy phosphate' compounds have great stabilization of hydrolysis products

Reduced charge repulsion and tautomerization:

Other 'high-energy phosphate' compounds have great stabilization of hydrolysis products

Reduced charge repulsion and resonance stabilization:

'Low-energy phosphate' compounds have less stabilization of hydrolysis products

α-D-Glucose-6-phosphate L-Glycerol-3-phosphate

∆G'° of hydrolysis: -13.8 kJ/mol ∆G'° of hydrolysis: -9.2 kJ/mol Phosphagens are 'high-energy phosphate' compounds used to quickly regenerate ATP

ex: **ADP + phosphocreatine** ↔ **ATP + creatine**

 $\Delta G'^{\circ} = -12.5 \text{ kJ/mol}$

ATP may transfer additional functional groups (pyrophosphoryl or adenylyl)

Figure 13-20 Lehninger Principles of Biochemistry, Fifth Edition © 2008 W.H. Freeman and Company

Adenylyl transfer is used to drive particularly disfavored reactions

Ex: activating amino acids for protein synthesis

ATP hydrolysis to AMP & PP_i: $\Delta G^{\circ} = -45.6$ kJ/mol PP_i hydrolysis to 2P_i: $\Delta G^{\circ} = -19.2$ kJ/mol

Transphosphorylations between nucleotides control relative concentrations

Nucleoside diphosphate kinase:

ATP + NDP \leftrightarrow ADP + NTP $\Delta G'^{\circ} \approx 0 \text{ kJ/mol}$ (dNDP) (dNTP)

Adenylate kinase:

2ADP \leftrightarrow ATP + AMP

 $\Delta G'^{\circ} \approx 0 \text{ kJ/mol}$

Thioesters also serve as energy currencies, due to large, negative ΔG° of hydrolysis

Coenzyme A functions as an acyl-carrier cofactor and thioester energy currency

Redox energy currencies transfer reducing power (ex: NAD and NADP)

- X = H Nicotinamide adenine dinucleotide (NAD⁺)
- $X = PO_3^{2^-}$ Nicotinamide adenine dinucleotide phosphate (NADP⁺)

NAD+ accepts a hydride ion to become NADH

© 2008 John Wiley & Sons, Inc. All rights reserved.

FAD and FMN are other redox currencies

© 2008 John Wiley & Sons, Inc. All rights reserved.