How are enzymes regulated?

- By controlling their concentration
 - Control of synthesis (activation or repression)
 - Degradation
- By controlling the availability of substrate
 - Production, degradation, compartmentation of substrate
 - Reversible binding of competitive inhibitors
- By controlling the activity of the enzyme
 - Reversible binding of modulators/effectors
 - Reversible or irreversible covalent modification

Modulator binding to an allosteric enzyme influences the shape of the active site

Many allosteric enzymes have separate subunits for binding a modulator (regulatory subunit, R) & for catalyzing the reaction (catalytic subunit, C)

Allosteric enzymes may show sigmoidal kinetics (positive cooperativity)

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Modulators may affect the enzyme's $K_{0.5}$

Figure 6-34b Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Modulators may affect the enzyme's V_{max}

Figure 6-34c Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

An allosteric enzyme catalyzes the first step of pyrimidine (C, T, U) nucleotide synthesis

© 2008 John Wiley & Sons, Inc. All rights reserved.

ATCase is composed of six catalytic and six regulatory subunits

© 2008 John Wiley & Sons, Inc. All rights reserved.

ATCase exhibits both homotropic and heterotropic interactions

The modulator CTP is a feedback inhibitor

© 2008 John Wiley & Sons, Inc. All rights reserved.

Binding of the substrates to ATCase induces a conformational change from $T \rightarrow R$

from neighboring subunit

of subunits, allowing domain closure

Enzymes may undergo many different types of covalent modification (over 500 possible!)

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Reversible phosphorylation is a common modification for regulating enzyme activity

© 2008 John Wiley & Sons, Inc. All rights reserved.

Glycogen phosphorylase catalyzes the ratecontrolling step in glycogen breakdown

Glycogen phosphorylase is a dimer of two identical subunits

Tower N-terminal domain (Glycogen-binding subdomain) Glycogen storage site Catalytic site Pyridoxal phosphate site

Courtesy of Stephen Sprang, University of Texas Southwestern Medical Center

Glycogen phosphorylase is regulated by phosphorylation and binding of modulators

Digestive proteases are regulated through irreversible covalent modification

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company