Serine proteases have a reactive serine

Trypsin is a serine protease

All serine proteases have an active site catalytic triad containing Ser, His, and Asp

Serine proteases differ in their substrate specificity (differing specificity pockets)

Serine proteases arose through convergent and divergent evolution

Serine proteases use multiple catalytic mechanisms in the hydrolysis of proteins

© 2008 John Wiley & Sons, Inc. All rights reserved.

© 2008 John Wiley & Sons, Inc. All rights reserved.

Chymotrypsin preferentially binds the tetrahedral intermediate

Pancreatic trypsin inhibitor binds tightly to trypsin

Courtesy of Michael Connolly, New York University

Bound trypsin inhibitor suggests formation of a tetrahedral intermediate

The tetrahedral intermediate was trapped through clever pH manipulation

Summary of important ideas on serine proteases

- Hydrolyze peptide bonds using an active site serine
- Common structure of active site, including:
 - Asp-His-Ser catalytic triad
 - Oxyanion hole
- Differ in substrate specificity
- Evolved through convergent and divergent evolution
- Use a combination of catalytic mechanisms
- Studies with inhibitors and under altered conditions can help clarify enzyme mechanisms