Modulators (effectors) influence oxygen binding to hemoglobin:

- Positive effectors stabilize the 'R' state:
 - Oxygen
 - (Carbon monoxide CO)
 - (Nitric oxide NO)
 - (Hydrogen sulfide H_2S)
- Negative effectors stabilize the 'T' state:
 - D-2,3-Bisphosphoglycerate (BPG)
 - H⁺ (low pH) 'Bohr effect'
 - Carbon dioxide (CO_2)
 - Chloride ion (Cl⁻)

Negative effectors in the blood enhance Hb's ability to release oxygen

© 2008 John Wiley & Sons, Inc. All rights reserved.

D-2,3-Bisphosphoglycerate (BPG)

© 2008 John Wiley & Sons, Inc. All rights reserved.

BPG binds in the center of the tetramer, forming salt bridges with + charged groups

Illustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes Medical Institute. Rights owned by HHMI. Reproduction by permission only.

The cavity for BPG binding is only present in the T-state tetramer

T-state

Figure 5-18 *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

R-state

The body can quickly increase BPG levels to enhance oxygen transfer at high altitude

The Bohr effect: Lowering pH reduces Hb's oxygen-binding affinity

Lower pH increases the liklihood of protonation and salt-bridge formation

Illustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes Medical Institute. Rights owned by HHMI. Reproduction by permission only.

The action of carbonic anhydrase lowers blood pH at the tissues and raises blood pH at the tissues and raises blood pH at the lungs, enhancing O_2 and CO_2 transfer

© 2008 John Wiley & Sons, Inc. All rights reserved.

The chloride-bicarbonate exchanger helps increase the CO₂-carrying capacity of blood

Carbamate formation enhances O_2 and CO_2 transfer between the lungs and tissues

Unnumbered 5 p166 *Lehninger Principles of Biochemistry, Fifth Edition* © 2008 W. H. Freeman and Company

Mutations alter Hb function in different ways

Table 7-1	ome Hemoglobin Variants	
Name ^a	Mutation	Effect
Hammersmit	h Phe CD1(42) $\beta \rightarrow Ser$	Weakens heme binding
Bristol	Val E11(67)β → Asp	Weakens heme binding
Bibba	Leu H19(136) $\alpha \rightarrow$ Pro	Disrupts the H helix
Savannah	Gly B6(24)β → Val	Disrupts the B-E helix interface
Philly	Tyr C1(35) $\beta \rightarrow$ Phe	Disrupts hydrogen bonding at the $\alpha_1 - \beta_1$ interface
Boston	His E7(58) $\alpha \rightarrow$ Tyr	Promotes methemoglobin formation
Milwaukee	Val E11(67)β → Glu	Promotes methemoglobin formation
lwate	His F8(87) $\alpha \rightarrow$ Tyr	Promotes methemoglobin formation
Yakima	Asp G1(99) $\beta \rightarrow$ His	Disrupts a hydrogen bond that stabilizes the T conformation
Kansas	Asn G4(102) $\beta \rightarrow$ Thr	Disrupts a hydrogen bond that stabilizes the R conformation

^{*a*}Hemoglobin variants are usually named after the place where they were discovered (e.g., hemoglobin Boston).

© 2008 John Wiley & Sons, Inc. All rights reserved.

In sickle-cell anemia, mutant Hb can aggregate, leading to sickle-shaped RBCs

David M. Phillips/Visuals Unlimited

The mutant Val of sickle-Hb can bind in a hydrophobic pocket of a T-state β-chain

© 2008 John Wiley & Sons, Inc. All rights reserved.

Binding of many T-state tetramers results in the formation of long, rigid fibers

Illustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes Medical Institute. Rights owned by HHMI. Reproduction by permission only.

Sickle-hemoglobin fibers can burst the cell

Courtesy of Robert Josephs, University of Chicago

The sickle trait provides resistance to malaria, hence its prevalence in certain populations

^{© 2008} John Wiley & Sons, Inc. All rights reserved.