
There are four levels of structure in proteins

We know that sequence \rightarrow structure, but we can't (yet) predict a structure from a sequence. So what good is knowing the sequence?

We can learn about proteins by *comparing* their sequences:

- **Structure** similar sequences form similar structures
- Function motifs (sequence patterns) can indicate particular functions
- Location signal sequences (at the protein's Nterminus) direct proteins to specific locations in the cell, or to be excreted
- Modification signal sequences or motifs can indicate sites for modification
- Evolution differences in related sequences reflect evolutionary distance
- Dysfunction changes in sequence can lead to disease

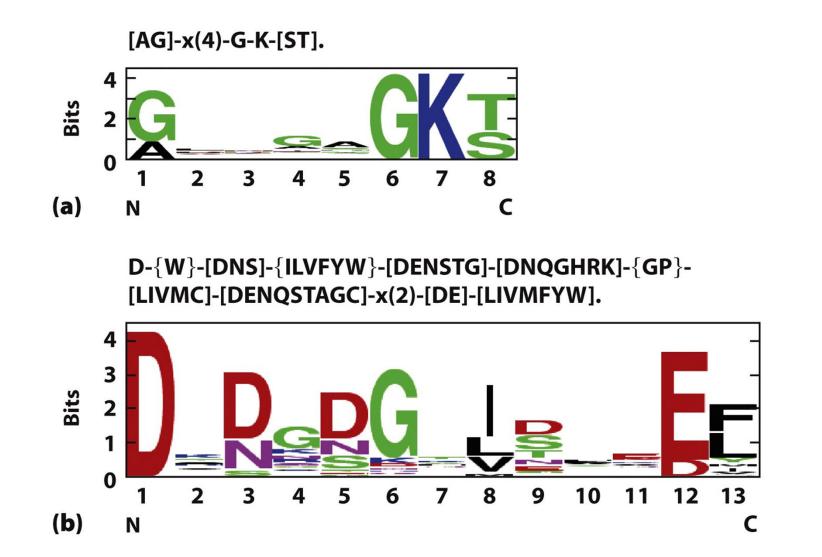
How do we determine a protein's sequence?

- Directly from the protein
 - Chemical sequencing
 - Physical methods for analyzing structure
- From the gene sequence

```
Amino acid<br/>sequence (protein)Gln – Tyr – Pro – Thr – Ile – TrpDNA sequence (gene)CAGTATCCTACGATTTGG
```

Important protein sequence databases

- RefSeq (NCBI) "Reference Sequence"
 - Non-redundant database of well-annotated sequences (gene, transcript, protein)
 - http://www.ncbi.nlm.nih.gov/projects/RefSeq/
 - Can also use 'Entrez' at NCBI site to search multiple sequence databases
- UniProt (EBI) "Universal Protein Resource"
 - Protein sequences and annotations, plus links to other databases
 - http://www.uniprot.org/


Proteins are aligned for comparison

Sequence alignments:

	-	Signature sequence	
Archaea 😽	∫ Halobacterium halobium	<mark>IGHVD</mark> H <mark>GK</mark> S <mark>T</mark> MVGR <mark>L</mark> LYET <mark>G</mark> SVPEH	IVIEQH
	Sulfolobus solfataricus	<mark>IGHVD</mark> H <mark>GK</mark> S <mark>T</mark> LVGR <mark>L</mark> LMDR <mark>G</mark> FIDEK	TVKEA
Eukaryotes	∫ Saccharomyces cerevisiae	<mark>IGHVD</mark> S <mark>GK</mark> S <mark>T</mark> TTGH <mark>L</mark> IYKC <mark>G</mark> GIDKF	TIEKF
		<mark>IGHVD</mark> S <mark>GK</mark> S <mark>T</mark> TTGH <mark>LIYKC</mark> GGIDKE	TIEKF
Gram-positive bacteriu	m Bacillus subtilis	<mark>IGHVD</mark> H <mark>GK</mark> S <mark>T</mark> MVGR	ITTV
Gram-negative bacterium Escherichia coli		<mark>IGHVD</mark> H <mark>GK</mark> T <mark>T</mark> LTAA	ΙΤΤΥ

Consensus sequences, showing conserved sites, may be represented in different ways

