

[A⁻] : [HA] = 1 : 1000

~80% of acid dissociation occurs within 1 pH unit of pKa

OH- eq. added	рН	= pKa +	[A-] : [HA]
0.0	1.8	-3.0	1:1000
~0.01	2.8	-2.0	1:100
0.1	3.8	-1.0	1:10
0.2	4.2	-0.6	1:4
0.3	4.4	-0.4	1:2.3
0.4	4.6	-0.2	1:1.5
0.5	4.8	0.0	1:1
0.6	5.0	0.2	1.5:1
0.7	5.2	0.4	2.3:1
0.8	5.4	0.6	4:1
0.9	5.8	1.0	10:1
~0.99	6.8	2.0	100:1
1.0	7.8	3.0	1000:1

In this buffering region (±1 pH unit of pKa), dissociation of the weak acid slows the rise in pH

Titration of other acids gives the same curve, just shifted along the pH axis (based on pKa)

Some weak acids (like amino acids) are polyprotic and can buffer over multiple pH ranges

The amino acid glutamate has an acidic R group

