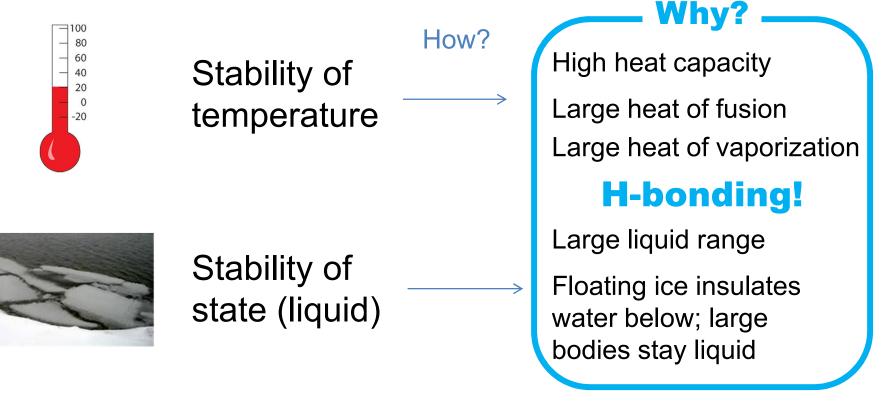


Water The solvent of life

- Why is water essential for life?
- How does water influence life (at the molecular level)?

Which environment is best suited to the development of life? Too unstable

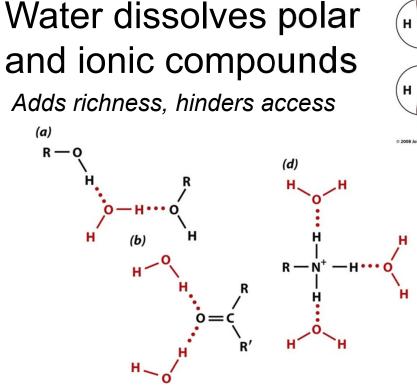


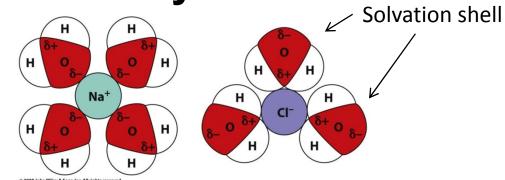
Liquid water is essential for life because it provides stability and richness

Richness of dissolved cpds and chemistry

Good solvent Protic, amphoteric

Many of water's unique properties are due to the extent of its hydrogen bonding

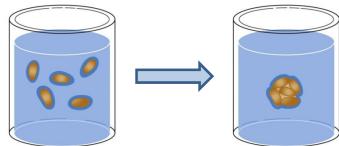

Water contains only H-bonding groups

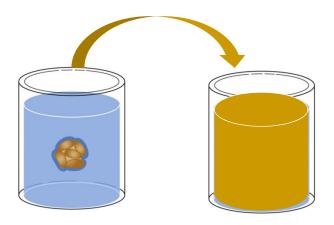

Compare with methanol, ethanol

Water has 2 H-bond donors and 2 acceptors Compare with ammonia

- Why is water essential for life?
- How does water influence life (at the molecular level)?

Water interacts with biomolecules, influcencing their chemistry

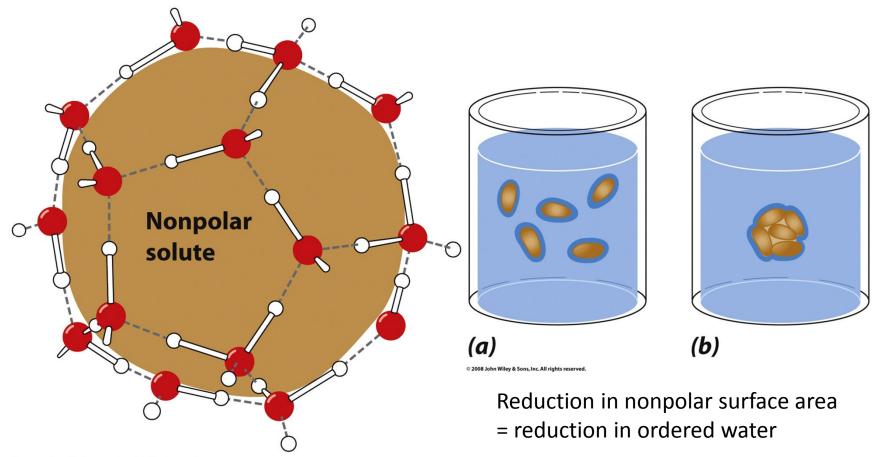



Water forms electrostatic or H-bonding interactions with polar & ionic groups *May stabilize structure, link interactors*

Water pushes nonpolar compounds together

Creates 'order'

The hydrophobic effect is driven by changes in entropy


Table 2-2 Thermodynamic Changes for	Transferring Hydrocarbons	from Water to Nonpola	r Solvents at 25°C
Process	∆ <i>H</i> (kJ · mol ^{−1})	<i>−T∆S</i> (kJ · mol ^{−1})	∆G (kJ · mol ^{−1})
CH_4 in $H_2O \Longrightarrow CH_4$ in C_6H_6	11.7	-22.6	-10.9
CH_4 in $H_2O \Longrightarrow CH_4$ in CCI_4	10.5	-22.6	-12.1
C_2H_6 in $H_2O \Longrightarrow C_2H_6$ in benzene	9.2	-25.1	-15.9
C_2H_4 in $H_2O \Longrightarrow C_2H_4$ in benzene	6.7	-18.8	-12.1
C_2H_2 in $H_2O \Longrightarrow C_2H_2$ in benzene	0.8	-8.8	-8.0
Benzene in $H_2O \implies$ liquid benzene ^a	0.0	-17.2	-17.2
Toluene in H ₂ O = liquid toluene ^a	0.0	-20.0	-20.0

^aData measured at 18°C.

Source: Kauzmann, W., Adv. Protein Chem. 14, 39 (1959).

© 2008 John Wiley & Sons, Inc. All rights reserved.

Water entropy is the major contributor to the hydrophobic effect

© 2008 John Wiley & Sons, Inc. All rights reserved.

Water also participates in biochemical reactions

- ATP hydrolysis drives muscle contraction $- ATP + H_2O \rightarrow ADP + HPO_4^{2-}$
- Proteins and polysaccharides are hydrolyzed into component amino acids or sugars
- Water adds to alkenes to form alcohols

 Ex: fumarase reaction of citric acid cycle
 OOC-CH=CH-COO⁻ + H₂O → OOC-CHOH-CH₂-COO⁻