Chemistry and Biochemistry 153A, Winter 2011 Final Exam Answers – Sheet 1

- 1. a. (1) False Yeast cells can perform alcoholic fermentation; Human cells can perform homolactic fermentation
 - b. (1) False Fermentation yields less energy than oxidation
 - c. (1) True
 - d. (1) False *The reduced form is* <u>NADH</u>
 - e. (1) False Coenzyme Q is an electron carrier; Coenzyme A is an acyl carrier
 - f. (1) True
 - g. (1) True
 - h. (1) True
 - i. (1) False Coenzyme Q is found in membranes
 - j. (1) False $FADH_2$ is not diffusible, it is part of Complex II
- 2. (3) b
- 3. a. (2) 2, 5
 - b. (2) C
 - c. (2) D, E, or F
 - d. (2) A or B
 - e. (4) Concentrations of pathway intermediates are measured and used to calculate ΔG for each reaction. Steps with large, negative ΔG are likely regulated.
- 4. (5) Any 5 words or phrases related to ATP synthase
- 5. a. (3) True
 - b. (3) False
 - c. (3) True
- 6. (3) Adjacent functional groups in the enzyme (e.g. heme R-groups, aa R-groups) influence the electron affinity
- 7. (4) a, b, d
- 8. a. (2) reductant; oxidized
 - b. (3) $\Delta E^{\circ} = E^{\circ}_{acceptor} E^{\circ}_{donor}$ $= E'^{\circ}_{NAD^+} - E'^{\circ}_{ethanol} = -0.315 V - (-0.197 V)$ = -0.118 V
 - c. (2) False $\Delta E^{\prime \circ}$ is negative, so the reaction is favored in the reverse direction

- d. (3) $\Delta G^{\circ} = -nF\Delta E^{\circ}$ = -2(96.5 kJ/Vmol)(-0.118V) = 22.8 kJ/mol
- e. (5) At equilibrium, $\Delta G = \Delta G^{\circ} + RT \ln Q = 0$ So $O = e^{-\Delta G'^{\circ}/RT}$

Also, $Q = [acet.][NADH]/[EtOH][NAD^+]$ Setting the two equal and rearranging, ratio [EtOH]/[acetaldehyde]

- $= \{ [NADH] / [NAD^+] \} \cdot e^{\Delta G'^{\circ}/RT} \\= (1/700) \cdot e^{(22.8kJ/mol)/(0.00831kJ/molK)(310K)}$
- = 10, at equilibrium

To favor forward reaction, there must be more reactant than at equilibrium, so [EtOH]/[acetaldehyde] > 10

- f. (2) C
- g. (3) ΔG° is measured at higher [H⁺] than ΔG° (1M versus 10⁻⁷ M). Since a proton is produced in the rxn, higher $[H^+]$ favors the reverse direction.
- 9. a. (4) nuc: -OH, hydride; elec: acetaldehyde, NAD⁺
 - b. (2) isozymes
 - c. (2) enz: GAPDH (2) sim: both oxidize an aldehyde and reduce NAD⁺ (2) diff: GAPDH couples oxidation with phosphorylation
- 10. a. (2) ligase, synthetase
 - b. (2) succinyl-CoA synthetase
 - c. (6) 1. Phosphoryl transfer (to acetate from ATP), nuc: acetate; elec: ATP 2. Thioester formation. nuc: CoA. elec: acetylphosphate
- 11. a. (3) Although carbons of ethanol enter TCA cycle, they don't contribute to net synthesis of intermediates (not anaplerotic rxns)
 - b. (5) Carbons enter TCA cycle, stay and label oxaloacetate. Oxaloacetate can be converted to glucose via gluconeogenesis.
 - c. (4) carbons 3 & 4 (lower left & far left)

- 12. a. (4) ADH rxn: 1NADH
 ALDH rxn: 1NADH
 Acetate → AcCoA: -1ATP
 TCA cycle: 3NADH, 1FADH₂, 1GTP
 Net: 5NADH, 1FADH₂, 1GTP, -1ATP
 - b. (3) 1 NADH \rightarrow 2.5 ATP, so 5NADH \rightarrow 12.5 ATP; 1FADH₂ \rightarrow 1.5 ATP, 1GTP=1ATP
 - Sum: 12.5 + 1.5 + 1 1 = 14 ATP
 - c. (3) glc oxidation yields 32 ATP, so 34/180 = 0.18 mol ATP/gram glc
 - d. (3) ethanol is more reduced
 - e. (2) True
- 13. a. (1) Lineweaver-Burk or double-reciprocal
 - b. (4) A defined [S] is allowed to react with enzyme, and [P] vs time is measured. The initial slope of this curve, V_o, is then calculated.
 - c. (2) competitive
 - d. (2) non-competitive
 - e. (3) A, C
 - f. (3) In the NAD⁺ binding site, where the nicotinamide binds
 - g. (2) A
 - h. A. (3) 6, B. (2) 3
- 14. a. (2) A
 - b. (3) To create smaller fragments for accurate sequencing and to allow reassembly of sequence fragments (via overlapping peptides)
 - c. (2) Lys is longer but not branched, ionizable, and has a positive charge (versus neutral Gln). Also, Lys is usually not an Hbond acceptor.
 - d. (2) 5
 - e. (4) $pI = (pKa_1+pKa_2)/2 = (4+4)/2 = 8/2 = 4$ Ionizable groups (from lowest pKa to highest): C-term COOH (~3), Glu-R COOH (~4), Glu-R COOH (~4), N-term NH₃⁺ (~8), Lys-R NH₃⁺ (~10.5). Below pH 4, the predominant charge states of the groups sum to a net positive charge. Above pH 4, the predominant charge states of the groups sum to a net negative charge.
 - f. (2) B
 - g. (2) No
- 15. a. (5) x-axis: pO₂; y-axis: θ (from 0 to 1.0) <u>Mb:</u> left-most curve, hyperbolic, approaching $\theta=1$

<u>Mb + NO</u>: right-shifted from Mb curve, hyperbolic, approaching $\theta < 1$ <u>Hb</u>: sigmoidal curve, approaching $\theta = 1$ <u>Hb + NO</u>: left-shifted from Hb curve, less sigmoidal than Hb, approaching $\theta < 1$

- b. (1) False *Hb is not an enzyme*
- 16. a. (2) B
 - b. (2) membrane lipid or membrane structure
- 17. a. (3) B
 - b. (5) (a) amylose
 - (b) α -D-glucopyruanose
 - (c) $\alpha(1 \rightarrow 4)$ O-glycosidic
 - (d) amylopectin
 - (e) $\alpha(1 \rightarrow 6)$ O-glycosidic
 - c. (2) hydrolase, glycosidase
 - d. (3) C, G, (F)
 - e. (2) a
 - f. A. (2) Schiff base or imine
 - B. (2) amino acid (or peptide)
 - C. (2) Aldolase
 - D. (3) By acting as an electron sink, stabilizing the carbanion that results from cleavage
 - g. A. (3) The heat induces movements that break the weak interactions that stabilize tertiary structure
 - B. (2) Exposed hydrophobic patches cause protein aggregation into large, insoluble clusters
 - h. (3) O₂ is available, allowing aerobic breakdown of glucose; this is more efficient than fermentation and promotes yeast growth
 - i. (2) Because CO₂ is produced during fermentation
 - j. (2) d