
- 1. (5) a, c, d, f, g
- 2. (2) c, a, b
- 3. (4 pts) (1) b; (2) c; (3) a; (4) d
- (3) A β-barrel is like a β-sheet rolled up so the edges H-bond. If there are an odd number of strands, two bonded strands will be parallel (see edge strands in pic), and the barrel is not wholly antiparallel.
- 5. (2) False *cholesterol clusters in rafts*
- 6. (2) False [S] is constant because $[S] >> [E_T]$
- 7. (2) True
- 8. (2) True

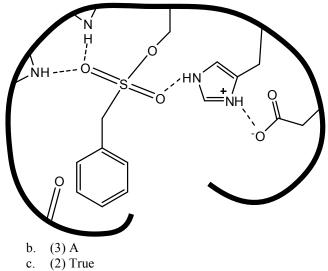
9. a. (3) $\theta = \frac{p0_2}{P_{50} + p0_2}$ $\theta(P_{50} + p0_2) = p0_2$ $\theta \cdot P_{50} + \theta \cdot p0_2 = p0_2$ $\theta \cdot P_{50} = p0_2 - \theta \cdot p0_2$ $\theta \cdot P_{50} = p0_2(1 - \theta)$ $P_{50} = p0_2 \frac{(1 - \theta)}{\theta} = 44 \text{ torr } \cdot \frac{0.1}{0.9} = 4.9 \text{ torr}$

- b. (4) x-axis: pO₂ (torr); y-axis: θ, with values 0 to 1.0;
 'N' curve: hyperbolic, passing through (2.8, 0.5) and approaching 1.0 in y; 'A' curve (right of 'N' curve): hyperbolic, passing through (4.9, 0.5) and (44, 0.9)
- c. (2) lower
- d. (3) Affinity depends on the rate constants for binding and unbinding. To have a lower affinity, O₂ would unbind (dissociate) faster from the altered myoglobin.
- 10. a. (2) hydrolase, phosphatase
 - b. (2) ligase, synthetase
 - c. (1) isomerase
- 11. a. (2) ΔG_6
 - b. (2) $\Delta G_2 \Delta G_6$ or $\Delta G_2 \Delta G_8$ accepted
 - c. (1) unimolecular $(1^{st} order)$
- a. (3) Substrates are positioned for maximal reactivity, because they bind the enzyme at an optimal orientation and distance relative to each other and to the enzyme's reactive groups.
 - b. (2) True
- 13. a. (1) in red blood cells
 - b. (2) $CO_2 + H_2O \implies HCO_3^- + H^+$
 - c. (2) lyase
 - d. (5) In the capillaries, where CO₂ levels are high, the enzyme catalyzes the formation of bicarbonate and H⁺. The protons protonate Hb and stabilize the T-state, promoting release of O₂. Bicarbonate exiting the RBCs results in the entry of Cl⁻, which also stabilizes the T-state.
 - e. (2) The maximal number of $S \rightarrow P$ conversions per single enzyme per unit time.

f. (2) cat. eff. =
$$\frac{k_{cat}}{k_m}$$

 $K_m = \frac{k_{cat}}{\text{cat. eff.}} = \frac{4 \times 10^5 \text{s}^{-1}}{1.5 \times 10^7 \text{M}^{-1} \text{s}^{-1}}$
= 0.027 M or 27 mM

(f. continued) (2)
$$V_{max} = k_{cat} [E_T] = 4 \times 10^5 s^{-1} \cdot 10^{-6} M = 0.4 M/s$$



$$K_m = \frac{k_{cat}}{cat \text{ eff.}} = \frac{10^6 \text{s}^{-1}}{8.3 \times 10^7 \text{M}^{-1} \text{s}^{-1}} = 0.012 \text{ M } or 12 \text{ mM}$$

$$K_m \text{ for CO}_2 \text{ is lower, so affinity for } \underline{CO}_2 \text{ is higher}$$

j. (1) False

- 14. a. (2) Retaining glycosidases hydrolyse glycosidic bonds and maintain the anomeric configuration in the product
 - b. (2) There are two SN_2 steps
- 15. (4) b, d, e

- 17. a. (3) Cysteine has a lower pKa, so it will deprotonate more readily, to form the reactive nucleophile.
 - b. (3) Because of cysteine's lower pKa, its deprotonated form is less nucleophilic than serine's deprotonated hydroxyl.