| > | with(linalg); |
Warning, the protected names norm and trace have been redefined and unprotected
| > | is_unitary:=U -> equal(htranspose(U),inverse(U)); is_hermitian:=H->equal(htranspose(H),H); is_posDefinite:=P->definite(P,'positive_def'); |
| > | ### Matrix A |
| > | A := linalg[fibonacci](5); |
| > | ASigma := evalf(Svd(A,AU,AV)); |
| > | evalm(AU); |
| > | evalm(AV); |
| > | is_unitary(A); |
| > | is_hermitian(A); |
| > | is_posDefinite(A); |
| > | inverse(A); |
| > | cond(A); |
| > |
| > | ### Matrix B |
| > | B := linalg[hilbert](8); |
| > | BSigma := evalf(Svd(B,BU,BV)); |
| > | evalm(BU); |
| > | evalm(BV); |
| > | is_unitary(B); |
| > | is_hermitian(B); |
| > | is_posDefinite(B); |
| > | inverse(B); |
| > | cond(B); |
| > |
| > |