{VERSION 3 0 "IBM RISC UNIX" "3.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 } {CSTYLE "2D Output" 2 20 "" 0 1 0 0 255 1 0 0 0 0 0 0 0 0 0 }{CSTYLE " " -1 256 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 297 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{CSTYLE "" -1 298 "" 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" 0 11 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 3 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Plot" 0 13 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {EXCHG {PARA 0 "" 0 "" {TEXT -1 38 "Eigenvalues of linear tran sformations," }}{PARA 0 "" 0 "" {TEXT -1 39 "and the eigendecompositio n of a matrix." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 13 "with(linalg):" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 16 "pi := evalf(Pi);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#> %#piG$\"+aEfTJ!\"*" }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "Plot a circ le (as a sequence of N points). " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 130 "N := 60;\np := vector(N+1, t -> [cos(2*pi*(t-1)/N), \+ sin(2*pi*(t-1)/N)]):\nplot( convert(p,list), scaling=CONSTRAINED, styl e=POINT );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"NG\"#g" }}{PARA 13 " " 1 "" {INLPLOT "6'-%'CURVESG6$7in7$$\"\"\"\"\"!F*7$$\"1+++a*=_%**!#;$ \"1+++KYGX5F.7$$\"1+++2gZ\"y*F.$\"1+++3p6z?F.7$$\"1+++j^c5&*F.$\"1+++W *p,4$F.7$$\"1,++wXXN\"*F.$\"1+++KkOnSF.7$$\"1+++QSDg')F.$\"1+++++++]F. 7$$\"1+++W*p,4)F.$\"1+++AD&y(eF.7$$\"1+++a#[9V(F.$\"1+++lgI\"p'F.7$$\" 1+++jgI\"p'F.$\"1,++b#[9V(F.7$$\"1+++?D&y(eF.$\"1+++Y*p,4)F.7$$\"1+++- +++]F.$\"1+++PSDg')F.7$$\"1+++MkOnSF.$\"1+++vXXN\"*F.7$$\"1+++Q*p,4$F. $\"1+++l^c5&*F.7$$\"1+++/p6z?F.$\"1+++3gZ\"y*F.7$$\"1+++HYGX5F.F,7$$!1 +++2Q.^?!#DF(7$$!1+++MYGX5F.F,7$$!1+++3p6z?F.F27$$!1+++U*p,4$F.F77$$!1 +++PkOnSF.$\"1+++tXXN\"*F.7$$!1+++(*******\\F.$\"1,++SSDg')F.7$$!1+++F D&y(eF.$\"1,++T*p,4)F.7$$!1+++ugI\"p'F.$\"1+++Y#[9V(F.7$$!1*****fD[9V( F.$\"1+++igI\"p'F.7$$!1+++]*p,4)F.$\"1+++9D&y(eF.7$$!1+++QSDg')F.FC7$$ !1+++!eaa8*F.$\"1+++BkOnSF.7$$!1+++i^c5&*F.$\"1+++Y*p,4$F.7$$!1+++4gZ \"y*F.$\"1+++-p6z?F.7$$!1+++b*=_%**F.$\"1+++ " 0 "" {MPLTEXT 1 0 116 "transfor m := proc(A,p)\n local i;\n RETURN(map(point ->\n convert(mult iply(A,vector(point)),list),\n p))\nend:\n" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 103 "A := matrix(2,2, [3,0, 0,1]);\neigenvals(A);\np lot( transform(A,p), scaling=CONSTRAINED, style=POINT ); \n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7$7$\"\"$\"\"!7$F+\"\"\"" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$\"\"$\"\"\"" }}{PARA 13 "" 1 "" {INLPLOT "6'-%'CURVESG6$7in7$$\"\"$\"\"!F*7$$\"1+++'olN)H!#:$\"1+++KYG X5!#;7$$\"1+++-GWMHF.$\"1+++3p6z?F17$$\"1+++\\&pJ&GF.$\"1+++W*p,4$F17$ $\"1+++tjjSFF.$\"1+++KkOnSF17$$\"1+++6i2)f#F.$\"1+++++++]F17$$\"1+++$) 40FCF.$\"1+++AD&y(eF17$$\"1+++wWVHAF.$\"1+++lgI\"p'F17$$\"1+++>=R2?F.$ \"1,++b#[9V(F17$$\"1+++cdNj " 0 "" {MPLTEXT 1 0 86 "theta := pi/6;\nRotation := matrix(2,2,[cos(thet a),-sin(theta),sin(theta),cos(theta)]);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%&thetaG$\"+dx)fB&!#5" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%)Rot ationG-%'matrixG6#7$7$$\"+PSDg')!#5$!+,+++]F,7$$\"+,+++]F,F*" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 75 "A1 := evalm( Rotation &* dia g(3,1) &* transpose(Rotation));\neigenvals(A1);\n" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#A1G-%'matrixG6#7$7$$\"+*******\\#!\"*$\"+TSDg')!#57$ F-$\"+++++:F," }}{PARA 11 "" 1 "" {XPPMATH 20 "6$$\"+&*********!#5$\"+ ++++I!\"*" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "plot( transfor m(A1,p), scaling=CONSTRAINED, style=POINT );" }}{PARA 13 "" 1 "" {INLPLOT "6'-%'CURVESG6$7in7$$\"1+++*******\\#!#:$\"1+++TSDg')!#;7$$\" 1+++V!Hod#F*$\"1+++@R2=5F*7$$\"1+++2eUDEF*$\"1+++2#o*e6F*7$$\"1+++dyDX EF*$\"1+++'fkrG\"F*7$$\"1+++4z5OEF*$\"1+++R&e7S\"F*7$$\"1+++6i2)f#F*$ \"1+++++++:F*7$$\"1+++Y%z:`#F*$\"1+++[rI#e\"F*7$$\"1+++nhMPCF*$\"1+++3 #ysk\"F*7$$\"1+++8)3kJ#F*$\"1+++U8?%p\"F*7$$\"1+++*R#4q@F*$\"1+++_CcA< F*7$$\"\"#\"\"!$\"1+++330K7`E#F*$!1+++g8L_`F-7$$!1+++N/y&R#F*$ !1+++Q`)[/(F-7$$!1+++*******\\#F*$!1+++ZSDg')F-7$$!1+++V!Hod#F*$!1+++B R2=5F*7$$!1+++2eUDEF*$!1+++3#o*e6F*7$$!1+++dyDXEF*$!1+++(fkrG\"F*7$$!1 +++4z5OEF*$!1+++R&e7S\"F*7$$!1+++6i2)f#F*$!1+++,+++:F*7$$!1+++Y%z:`#F* $!1+++[rI#e\"F*7$$!1+++mhMPCF*$!1+++3#ysk\"F*7$$!1+++7)3kJ#F*$!1+++V8? %p\"F*7$$!1+++*R#4q@F*$!1+++_CcAF*$!1+++330K;$>F*$\"1+++$3' [5=F-7$$\"1+++EZ-5@F*$\"1+++gh8,OF-7$$\"1+++$>7`E#F*$\"1+++M8L_`F-7$$ \"1+++N/y&R#F*$\"1+++X`)[/(F-7$$\"1+++)******\\#F*$\"1+++BSDg')F--%'CO LOURG6&%$RGBG$\"#5!\"\"FhnFhn-%&STYLEG6#%&POINTG-%(SCALINGG6#%,CONSTRA INEDG-%+AXESLABELSG6$%!GFb_l-%%VIEWG6$%(DEFAULTGFf_l" 2 400 300 300 5 0 1 0 2 9 0 4 1 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 51 "A2 := randmatrix(2,2);\nmap(evalf, [eigenvals(A2)]); " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%#A2G-%'matrixG6#7$7$\"#X!\")7$!# $*\"##*" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#7$$\"+@Z.X5!\"($\"+%z_'\\K! \")" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 58 "plot( transform(A2,p ), scaling=CONSTRAINED, style=POINT );" }}{PARA 13 "" 1 "" {INLPLOT "6 '-%'CURVESG6$7in7$$\"#X\"\"!$!#$*F*7$$\"1+++eds\"R%!#9$!1+++m8&)R=(F07$$\"1+++G2aKSF0$!1+++a#p=+'F07$$\"1+++ W_c&y$F0$!1+++Rc*Rv%F07$$\"1+++F0$\"1+++1Nbw>F07$$\"1+++y'zrb\"F0$\"1+++7PVi%F07$$\"1+++)e7tH'FQ$\"1+++5>'e(eF07$$\"1+ ++i_%3`\"FQ$\"1+++1#z`1(F07$$!1+++KVR_KFQ$\"1,++Ln[x\")F07$$!1,++4+++! )FQ$\"1+++-+++#*F07$$!1+++-c*fE\"F0$\"1+++:;<75!#87$$!1+++*o?\"=z'p_%F0$\"1+++&>y(o6Fip7$$!1+++cN*zc%F0$\" 1+++Cg&45\"Fip7$$!1+++*Hr*eXF0$\"1+++[:2@5Fip7$$!#XF*$\"1+++'******H*F 07$$!1+++cds\"R%F0$\"1+++^F0$!1+++1Nbw>F07$$!1+++ s'zrb\"F0$!1+++IPVi%F07$$!1+++nDJ(H'FQ $!1+++9>'e(eF07$$!1+++*GX3`\"FQ$!1++++#z`1(F07$$\"1+++]VR_KFQ$!1+++Pn[ x\")F07$$\"1+++$)******zFQ$!1+++'******>*F07$$\"1+++.c*fE\"F0$!1+++:;< 75Fip7$$\"1+++(o?\"=y (o6Fip7$$\"1+++bN*zc%F0$!1+++Dg&45\"Fip7$$\"1+++*Hr*eXF0$!1+++Z:2@5Fip 7$$\"1+++,+++XF0$!1+++6+++$*F0-%'COLOURG6&%$RGBG$\"#5!\"\"F*F*-%&STYLE G6#%&POINTG-%(SCALINGG6#%,CONSTRAINEDG-%+AXESLABELSG6$%!GFh_l-%%VIEWG6 $%(DEFAULTGF\\`l" 2 400 300 300 5 0 1 0 2 9 0 4 1 1.000000 45.000000 45.000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 3 8236 0 0 0 0 0 0 }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 13 "Remember the " }{TEXT 256 36 "eigenvalue decomposition of a matrix" }{TEXT -1 1 ":" }}{PARA 0 " " 0 "" {TEXT -1 56 "A square, nonsingular real matrix A can be decompo sed as" }}{PARA 0 "" 0 "" {TEXT -1 6 " " }{XPPEDIT 18 0 "A = X*La mbda*X^(-1);" "6#/%\"AG*(%\"XG\"\"\"%'LambdaG\"\"\")%\"XG,$\"\"\"!\"\" F'" }{TEXT -1 13 " (i.e., " }{XPPEDIT 18 0 "A*X = X*Lambda;" "6#/ *&%\"AG\"\"\"%\"XG\"\"\"*&%\"XGF&%'LambdaGF&" }{TEXT -1 2 " )" }} {PARA 0 "" 0 "" {TEXT -1 44 "where X is a square nonsingular matrix,\n and " }{XPPEDIT 18 0 "Lambda;" "6#%'LambdaG" }{TEXT -1 50 " is a diago nal matrix of complex eigenvalues of A." }}{PARA 0 "" 0 "" {TEXT -1 4 "The " }{TEXT 298 14 "column vectors" }{TEXT -1 21 " of X are called t he " }{TEXT 297 12 "eigenvectors" }{TEXT -1 6 " of A." }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "X := 'X';" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"XGF$" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 91 " eigenvalues := evalf(Eigenvals(A2,X));\nLambda := diag(seq(eigenvalues [k],k=1..rowdim(A2)));" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%,eigenvalu esG-%'vectorG6#7$$\"+&z_'\\K!\")$\"+@Z.X5!\"(" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%'LambdaG-%'matrixG6#7$7$$\"+&z_'\\K!\")\"\"!7$F-$\"+@ Z.X5!\"(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalm(X);" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7$7$$!+C\\0!))*!#6$\"+#o\" \\C6!#57$$!+%Q(=W:F-$!+I\\*QO)F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 31 "evalm( A2 &* X - X &* Lambda );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#-%'matrixG6#7$7$$\"\"\"!\"*\"\"!7$$!\"$F*$\"\"&!\")" }} }{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 7 "det(X);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#$\"+)*********!#6" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 21 "charpoly(A2, lambda);" }}{PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$)%'lambdaG\"\"#\"\"\"\"\"\"F&!$P\"\"%'R$F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 12 "fsolve( % );" }}{PARA 11 "" 1 "" {XPPMATH 20 "6$$\"+&z_'\\K!\")$\"+@Z.X5!\"(" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "det( A2 - lambda * matrix(2,2,[1,0,0,1]) );" }} {PARA 11 "" 1 "" {XPPMATH 20 "6#,(*$)%'lambdaG\"\"#\"\"\"\"\"\"F&!$P\" \"%'R$F)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "A := evalm(transpose(A2) &* A2); # \+ symmetric " }}{PARA 11 "" 1 "" {XPPMATH 20 "6#>%\"AG-%'matrixG6#7$7$ \"&u1\"!%;*)7$F+\"%G&)" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 37 "e igenvalues := evalf(Eigenvals(A,Q));" }}{PARA 11 "" 1 "" {XPPMATH 20 " 6#>%,eigenvaluesG-%'vectorG6#7$$!+9.%H+\"!\"%$!+J0!*\\6!\"'" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 9 "evalm(Q);" }}{PARA 11 "" 1 " " {XPPMATH 20 "6#-%'matrixG6#7$7$$!+C\\0!))*!#6$\"+#o\"\\C6!#57$$!+%Q( =W:F-$!+I\\*QO)F-" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {MARK "26 0 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 }