CS170A — Winter 2003

Final Examination

Due: noon Thursday March 20, 2003

D. Stott Parker (stott@cs.ucla.edu)

In order to obtain full credit, you are asked to submit hardcopy of all plots/graphs with your solutions.

You are to do this assignment individually, by yourself. The hardcopy you submit for grading must include a **signed statement certifying that it is your work and only your work.** You may use any materials on the Internet except the work of other students in CS170A, past or present, as **long as you state clearly what you have used.**

All files below should be in the directory http://www.seas.ucla.edu/cs170a/final/ (or, equivalently, ˜cs170ata/www/final/ on SEASnet).

1 Newton's Method

The seventh Tchebycheff polynomial is defined by

$$
T_7(z) = 64 z^7 - 112 z^5 + 56 z^3 - 7 z \quad \text{for } z \in [-1, 1].
$$

This polynomial has 7 real roots in the interval $[-1, 1]$.

1. Use Newton's method to find and print each of the 7 roots.

Hint: It may help to automate the use of Newton's method. Remember that, given a function f, Newton's method attempts to find a value z such that $f(z) = 0$ by executing the iteration

> +3254-6.87 (z_k) where $g(z) = z - f(z)/f'(z)$.

for some intelligently-chosen initial value z_0 , which can often be chosen by looking at a plot of f .

For example, the definition

Newtonize := $f \rightarrow$ unapply(simplify(z - $f(z)/diff(f(z),z)$), z);

finds the function g for any given function f. Then, to compute $\sqrt[3]{a}$ using Newton's method for any nonnegative real value a, the following program will work:

```
q := Newtonize( z \rightarrow z^3 - a );
a := 2.0; # or whatever we want to find the cube root of
zold := 0.0;z := 1.0; # an inspired initial value
while (abs((z-zold)/z) \geq 10^(1-Diqits))do
      zold := z;z := g(z)od;
```
2. Generate a plot showing to which of the 7 roots of $T_7(z)$ your Newton's method implementation converges when it is given each complex starting value $z_0 = (x + iy)$ in the 101 \times 101 grid with

 $x \in [-1.00, -0.98, -0.96, \ldots, 0.96, 0.98, 1.00],$ $y \in [-1.00, -0.98, -0.96, \ldots, 0.96, 0.98, 1.00].$

Hint: In class we studied ˜cs170ata/www/final/newton.m (http://www.seas.ucla.edu/cs170a/final/newton.m) which generated a similar plot for $f(z) = z^3 - 1$.

2 Pink Noise

The program ˜cs170ata/www/final/Noise.m(http://www.seas.ucla.edu/cs170a/final/Noise.m) studied in class generates white, brown, and pink noise. This problem studies two nice uses of pink noise.

1. **one-dimensional noise**

The goal: to generate some pink noise, and play it as music.

Pink noise is defined as noise having a power spectrum that decreases like $1/f$. That is, the f-th Fourier coefficient of the noise has complex absolute value approximating $a \cdot 1/f + b$, where a and b are constant. One theory argues that pink noise is aesthetically pleasing.

Actually, 'off-pink' noise — having a power spectrum that decreases like $1/f^\alpha$, for some constant $\alpha \in [0,2]$ is also supposedly aesthetically pleasing. Brownian noise has $\alpha = 2$; White noise has $\alpha = 0$.

Pink noise can be generated using something like the code below, which first generates a $1/f^{\alpha}$ spectrum, the performs an inverse FFT to get back a real (i.e., non-imaginary) signal.

The program http://www.seas.ucla.edu/cs170a/final/Noise.m(also available on SEASnet as ``cs170 ata/www/final/Noise.m)implemented this for $\alpha = 1$:

```
alpha = 1; % pure pink noise
n = 1024; % for example
f = (1:n/2)';
randphase = exp(-2i * pi * rand(n/2,1));noise = randn(n/2,1) .* randphase;
pinkspectrum = zeros(n,1);pink spectrum(1:n/2) = (1./(f^*.\alpha1pha)).* noise;
for i=2:n/2; pinkspectrum(n+2-i) = conj(pinkspectrum(i)); end
close all
loglog(f,abs(pinkspectrum(1:n/2)), f, 1./f, 'r')
title('the power spectrum of pink noise drops off as 1/f')
pink = real(ifft(pinkspectrum));
plot(pink)
title('pink noise')
```
The function http://www.seas.ucla.edu/cs170a/final/NoiseMusic.m(also available on SEASnet as ˜cs170ata/www/final/NoiseMusic.m) takes a vector of 'noise' as input, and plays it as music, by emitting each value in the input as a musical note. It is crude, so feel free to improve it. For example, you can make it vary the time duration of the notes; currently it gives all notes the same duration.

Generate pink music sequences for several values of α in [0, 2], and determine which ones are the most 'aesthetically pleasing' when their NoiseMusic soundtrack is played. For your favorite, plot the soundtrack (as a function) and annotate the plot, explaining what parts you like, and why.

2. **two-dimensional noise**

The goal: generate some 2-dimensional pink noise, and plot it as a 'pink mountain'.

Where the code above generates a vector of pink noise of length n , this time generate a *matrix* of Pink noise.

You can do this by generalizing the code above to produce a $n \times n$ matrix $\text{PinkSpectrum with a central loop}$ over i and j defining the matrix in something like the following way:

```
...
for i=2:(n/2)for j=2:(n/2)f = sqrt(i^2 + j^2);PinkSpectrum(i,j) = (1/f)^2alpha * PinkSpectrum(i,j) * randphase(i,j);
      ...
```
After this PinkNoise should simply be the 2-dimensional inverse FFT (ifft2()) of PinkSpectrum. The 2-dimensional FFT of a matrix implements an FFT on each row and on each column of the matrix.

After you have done this, generate a .gif image showing the resulting PinkNoise matrix as a 3-d surface.

Hint: The following Maple code creates $a \cdot g$ if image showing the contents of an $n \times n$ matrix PinkNoise:

```
# store any plot output in file "myimage.gif", in 512x512 gif format:
plotsetup(gif,plotoutput="myimage.gif",plotoptions="height=512,width=512");
with(plots):
# plot the matrix in color, with row 1 at the top, and row n at the bottom
plot3d( PinkNoise[(n-ni+1),j], j=1..n, ni=1..n, grid=[n,n],
            style=patch, color=PinkNoise[(n-ni+1),j] );
```
3 Period 3 implies Chaos

A basic result of chaos theory is that any iteration of the form

 $x_{k+1} = h(x_k)$ (x_k real)

is inherently unstable if h has **period** 3 (that is, there is some real value x such that $h(h(h(x))) = x$, but $h(x) \neq x$). Instability here means that a small change in the initial value of the iteration can cause a large change in the output of the iteration. As a result, the iteration above can become something like a random number generator.

For example, suppose $h(x) = x^2 - 2$. This function has period 3, since for a particular value of x near -1.879 , $h(h(h(x))) = x$. Specifically, with Maple:

Notice it is not necessary that $h(h(h(x))) = x$ for *all* values of x, but only that $h(h(h(x))) = x$ for *some* value of x. Determine which of the following functions h (if any) have period 3:

- $K(x) = 0$ $(1-x)$ $K(x) = 0$ $(1-x)$
-
- $K(X) = A \cdot (1 \lambda)$

4 Optimization

In the third homework assignment, you were asked to find a least squares fit for the dataset giving 9 attributes of 391 cars called autos.m (or autos.maple). The start of autos.m looks like this:

% Columns of the autos matrix: % 1 -- MPG % 2 -- Cylinders % 3 -- Displacement % 4 -- Horsepower

```
% 5 -- Weight
% 6 -- Acceleration
% 7 -- Year
% 8 -- Origin
% 9 -- Make
% MPG Cyl Disp Hpwr Wt Accel Yr Org Make
autos = [ ...
13.0, 8, 360.0, 175.0, 3821., 11.0, 73, 1, 1; ...
14.0, 8, 304.0, 150.0, 3672., 11.5, 73, 1, 1; ...
14.0, 8, 304.0, 150.0, 4257., 15.5, 74, 1, 1; ...
15.0, 6, 258.0, 110.0, 3730., 19.0, 75, 1, 1; ...
15.0, 8, 304.0, 150.0, 3892., 12.5, 72, 1, 1; ...
```
All values in the files are numeric (the last two columns use integer codes).

1. Use nonlinear least squares to find the coefficients α , β , γ , δ , α , δ , α , that yield a model

MPG = α · horsepower α + β · displacement α + γ · weight α + δ

with minimal error.

- 2. Is finding these coefficients a convex optimization problem? (as defined in http://www.seas.ucla.edu/cs170a/lecture8/Optimization.pdf)
- 3. How does the error of your model compare with that of the least-squares model, which assumes $a = b = c = 1$?

5 Train Tracks

Suppose a new steel train track is installed, running from point a to point b , which are 1 mile apart. To save money, the track was pinned down with spikes only at these two points. At night a CS170A student comes and cuts the track halfway between a and b , inserts an extra 1-foot section of track, and welds the pieces together. As a result of this insertion, the track bows up by some amount h in a circular arc. The situation looks like this:

The question is: what is h , the height of the track halfway between a and b ?

6 Extra Credit

The class notes on Optimization (http://www.seas.ucla.edu/cs170a/lecture8/Optimization.pdf) includes a sample application of optimization in fitting a 'mixture' of two gaussian densities to a histogram of observed geyser duration times for *Old Faithful*.

If you look at the figure showing the fit of the gaussians to the histogram is not very good — the histogram is more 'skewed' than the gaussians.

In the class web site, the file eruptiondurations.m (Matlab version) gives the eruption duration times (in seconds) for Old Faithful. Find a better fit to the data by considering a different distribution.

For example, consider using the *lognormal* distribution instead of the normal (gaussian) distribution.