Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR): Publications

Publications Graphic

A US Department of Energy Energy Frontier Research Center (Class: 2018 — 2022)

Publications acknowledging DOE, Office of Science, BES under Award DE-SC0019381 on Google Scholar:

List of publications (PIs in bold):

    2022

  1. A. D Ready, S. Becwar, D. Jung, A. Kallistova, E. Schueller, K. P. Anderson, R. Kubena, R. Seshadri, B. F. Chmelka, and A. Spokoyny, Synthesis and structural properties of a 2D Zn(II) dodecahydroxy-closo-dodecaborate coordination polymer, Dalton (2022). DOI: 10.1039/D2DT01292H
  2. J. J. Zak, S. S. Kim, F. A. L. Laskowski, and K. A. See, An exploration of sulfur redox in lithium battery cathodes J. Am. Chem. Soc. 144 (2022) 10119 10132. DOI: 10.1021/jacs.2c02668
  3. J. L. Andrews, E. T. McClure, K. K. Jew, M. B. Preefer, A. Irshad, M. J. Lertola, D. D. Robertson, C. Z. Salamat, M. J. Brady, L. F. J. Piper, S. H. Tolbert, J. Nelson Weker, B. F. Chmelka, B. S. Dunn, S. R. Narayan, W. C. West, and B. C. Melot, Room-temperature electrochemical fluoride (de)insertion into CsMnFeF6, ACS Energy Lett. 7 (2022) 2340–2348. DOI: 10.1021/acsenergylett.2c01324
  4. G. Pace, O. Nordness, K. Asham, R. J. Clément, and R. A. Segalman, Impact of side chain chemistry on lithium transport in mixed ion–electron-conducting polymers, Chem. Mater. 34 34 (2022) 4672–4681. DOI: 10.1021/acs.chemmater.2c00592
  5. R. Vincent, Y. Luo, J. Andrews, A. Zohar, Y. Zhou, Q. Yan, E. Mozur, M. Preefer, J. Nelson Weker, A. K. Cheetham, J. Luo, L. Pilon, B. Melot, B. Dunn, and R. Seshadri, High-rate lithium cycling and structure evolution in Mo4O11, Chem. Mater. 34 (2022) 4122–4133. DOI: 10.1021/acs.chemmater.2c00420
  6. S. S. Kim, D. N. Agyeman-Budu, J. J. Zak, A. Dawson, Q. Yan, M. Cában-Acevedo, K. M. Wiaderek, A. A. Yakovenko, Y. Yao, A. Irshad, S. R. Narayan, J. Luo, J. Nelson Weker, S. H. Tolbert, and K. A. See, Promoting reversibility of multielectron redox in alkali-rich sulfide cathodes through cryomilling, Chem. Mater. 34 (2022) 3236–3245. DOI: 10.1021/acs.chemmater.2c00030
  7. S. W. Baek, M. Saber, A. Van der Ven, L. Pilon, Thermodynamic analysis and interpretative guide of entropic potential measurements of battery electrodes, J. Phys. Chem. C 126 (2022) 6096–6110. DOI: 10.1021/acs.jpcc.1c10414
  8. Z. Wei and P. Sautet, Revisiting the link between magnetic properties and chemisorption at graphene nanoribbon zigzag edge, J. Chem. Phys. 156 (2022) 044706. DOI: 10.1063/5.0079064
  9. Q. Yan, S.-T. Ko, A. Dawson, D. Agyeman-Budu, G. Whang, Y. Zhao, M. Qin, B. S. Dunn, J. Nelson Weker, S. H. Tolbert, J. Luo, Thermodynamics-driven interfacial engineering of alloy-type anode materials, Cell Reports Phys. Sci. 3 (2022) 100694. DOI: 10.1016/j.xcrp.2021.100694
  10. J. L. Kaufman and A. Van der Ven, Cation diffusion facilitated by antiphase boundaries in layered intercalation compounds, Chem. Mater. 34 (2022) 1889–1896. DOI: 10.1021/acs.chemmater.1c04152
  11. K. E. Wyckoff, J. Kaufman, S. W. Baek, C. Dolle, J. Zak, J. Bienz, L. Kautzsch, R. Vincent, A. Zohar, K. See, Y. Eggeler, L. Pilon, A. Van der Ven, and R. Seshadri, Metal-metal bonding as an electrode design principle in the low-strain cluster compound LiScMo3O8, J. Am. Chem. Soc. 144 (2022) 5841–5854. DOI: 10.1021/jacs.1c12070
  12. P. Das, R. Elizalde-Segovia, B. Zayat, C. Z. Salamat, G. Pace, K. Zhai, R. C. Vincent, B. S. Dunn, R. A. Segalman, S. H. Tolbert, S. R. Narayan and B. C. Thompson, Enhancing the ionic conductivity of poly(3,4-propylenedioxythiophenes) with oligoether side chains for use as conductive cathode binders in lithium-ion batteries, Chem. Mater. 34 (2022) 2672–2686. DOI: 10.1021/acs.chemmater.1c03971
  13. A. Van der Ven, K. See, L. Pilon, Hysteresis in electrochemical systems, Battery Energy, 1 (2022) 20210017. DOI: 10.1002/bte2.20210017
  14. S. W. Baek, M. B. Preefer, M. Saber, K. Zhai, M. Frajnkovič, Y. Zhao, B. S. Dunn, A. Van der Ven, R. Seshadri, and L. Pilon, Potentiometric entropy and operando calorimetric measurements reveal fast charging mechanisms in PNb9O25, J. Power Sources 520 (2022) 230776(1–12). DOI: 10.1016/j.jpowsour.2021.230776
  15. J. Holoubek, Q. Yan, H. Liu, E. J. Hopkins, Z. Wu, S. Yu, J. Luo, T. A. Pascal, Z. Chen, P. Liu, Oxidative stabilization of dilute ether electrolytes via anion modification, ACS Energy Lett. 7 (2022) 675–682. DOI: 10.1021/acsenergylett.1c02723

    2021

  16. R. Elizalde-Segovia, P. Das, B. Zayat, A. Irshad, B. C. Thompson, and S. R. Narayan, Understanding the role of π–conjugated polymers as binders in enabling designs for high-energy/high-rate lithium metal batteries, J. Electrochem. Soc. 168 (2021) 110541. DOI: 10.1149/1945-7111/ac3850
  17. M. Saber, M. B. Preefer, S. K. Kolli, W. Zhang, G. Laurita, B. Dunn, R. Seshadri, and A. Van der Ven, Role of electronic structure in Li ordering and chemical strain in the fast charging Wadsley–Roth phase PNb9O25, Chem. Mater. 33 (2021) 7755--7766. DOI: 10.1021/acs.chemmater.1c02059
  18. D. Rawlings, D. Lee, J. Kim, I.-B. Magdău, G. Pace, P. M. Richardson, E. M. Thomas, S. P. O. Danielsen, S. H. Tolbert, T. F. Miller III, R. Seshadri, and R. A. Segalman, Li+ and oxidant addition to control ionic and electronic conduction in ionic liquid-functionalized conjugated polymers, Chem. Mater. 33 (2021) 6464—6474. DOI: 10.1021/acs.chemmater.1c01811
  19. B. Li, X. Zhang, J. M. Stauber, T. F. Miller III, and A. M. Spokoyny, Electronic structure of superoxidized radical cationic dodecaborate-based clusters, J. Phys. Chem. A 125 (2021) 6141—6150. DOI: 10.1021/acs.jpca.1c03927
  20. J. L. Kaufman and A. Van der Ven, Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide, Phys. Rev. Mater. 5 (2021) 055410. DOI: 10.1103/PhysRevMaterials.5.055401
  21. N. H. Bashian, M. Zuba, A. Irshad, S. M. Becwar, J. Vinckeviciute, W. Rahim, K. J. Griffith, E. T. McClure, J. K. Papp, B. D. McCloskey, D. O. Scanlon, B. F. Chmelka, A. Van der Ven, S. R. Narayan, L. F. J. Piper, and B. C. Melot, Electrochemical oxidative fluorination of an oxide perovskite, Chem. Mater. 33 (2021) 5757—5768. DOI: 10.1021/acs.chemmater.1c01594
  22. B. Zayat, P. Das, B.C. Thompson, and S. Narayan, In situ measurement of ionic and electronic conductivities of conductive polymers as a function of electrochemical doping in battery electrolytes, J. Phys. Chem. C. 125 (2021) 7533—7541. DOI: 10.1021/acs.jpcc.0c08934
  23. Z. Wei, S. M. Becwar, B. F. Chmelka, and P. Sautet Atomic environments in N-containing graphitic carbon probed by first-principles calculations and solid-state nuclear magnetic resonance, J. Phys. Chem. C 125 (2021) 8779—8787. DOI: 10.1021/acs.jpcc.1c00511
  24. J. Kim, B. M. Savoie, and T. F. Miller III, Interfacial electron transfer and ion solvation in the solid electrolyte interphase, J. Phys. Chem. C 125 (2021) 4614—4622. DOI: 10.1021/acs.jpcc.0c11194
  25. I.-B. Magdău and T. F. Miller, Machine learning solvation environments in conductive polymers: Application to ProDOT-2Hex with solvent swelling, Macromolecules 54 (2021) 3377—3387. DOI: 10.1021/acs.macromol.0c02132
  26. D. Wang, Q. Yan, M. Li, H. Gao, J. Tian, Z. Shan, N. Wang, J. Luo, M. Zhou, and Z. Chen, Boosting the cycling stability of Ni-rich layered oxide cathode by dry coating of ultrastable Li3V2(PO4)3 nanoparticles, Nanoscale 13 (2021) 2811—2819. DOI: 10.1039/D0NR08305D
  27. S. W. Baek, K. E. Wyckoff, D. M. Butts, J. Bienz, A. Likitchatchawankun, M. B. Preefer, M. Frajkovič, B. S. Dunn, R. Seshadri, and L. Pilon, Operando calorimetry informs on the origin of rapid rate performance in microwave-prepared TiNb2O7 electrodes, J. Power Sources 490 (2021) 229537. DOI: 10.1016/j.jpowsour.2021.229537
  28. G. Whang, Q. Yan, D. Li, Z. Wei, D. Butts, P. Sautet, J. Luo, and B. Dunn, Avoiding dendrite formation by confining lithium deposition underneath Li-Sn coatings, J. Mater. Res. DOI: 10.1557/s43578-020-00047-8
  29. A. J. Martinolich, J. J. Zak, D. N. Agyeman-Budu, S. S. Kim, N. H. Bashian, A. Irshad, S. R. Narayan, B. C. Melot, J. N. Weker, and K. A. See, Controlling covalency and anion redox potentials through anion substitution in Li-rich chalcogenides, Chem. Mater. 33 (2021) 378—391. DOI: 10.1021/acs.chemmater.0c04164
  30. A. Likitchatchawankum, R. H. DeBlock, G. Whang, M. Frajnkovič, O. Munteshari, B. S. Dunn, and L. Pilon, Heat generation in electric double layer capacitors with neat and diluted ionic liquid electrolytes under large potential window between 5 and 80 °C, J. Power Sources 488 (2021) 229368. DOI: 10.1016/j.jpowsour.2020.229368

    2020

  31. Q. Yan, S.-T. Ko, Y. Zhao, G. Whang, A. Dawson, S. H. Tolbert, B. S. Dunn, and J. Luo, Cryogenic milling method to fabricate nanostructured anodes, ACS Appl. Energy Materials 11 (2020) 11285–11292. DOI: 10.1021/ACSAEM.0C02209
  32. H. Gao, Q. Yan, P. Xu, H. Liu, M. Li, P. Liu, J. Luo, and Z. Chen, Efficient direct recycling of degraded LiMn2O4 cathodes by one-step hydrothermal relithiation, ACS Appl. Mater. Interfaces 12 (2020) 51546—51554. DOI: 10.1021/acsami.0c15704
  33. K. E. Wyckoff, D. D. Robertson, M. B. Preefer, S. M. L. Teicher, J. Bienz, L. Kautzsch, T. E. Mates, J. A. Cooley, S. H. Tolbert, and R. Seshadri, High capacity Li+ storage through multielectron redox in the fast-charging Wadsley–Roth phase (W0.2V0.8)3O7, Chem. Mater. 32 (2020) 9415—9424. DOI: 10.1021/acs.chemmater.0c03496
  34. T. C. Lin, A. Dawson, Y. Yan, D. Ashby, S. C. King, B. Dunn, J. N. Weker, and S. H. Tolbert, Understanding stabilization in nanoporous intermetallic alloy anodes for Li ion batteries using operando transmission X-ray microscopy, ACS Nano 14 (2020) 14820—14830. DOI: 10.1021/acsnano.0c03756
  35. P. Das, B. Zayat, Q. Wei, C. Z. Salamat, I.-B. Magdău, R. Elizalde-Segovia, D. Rawlings, D. Lee, G. Pace, A. Irshad, L. Ye, A. Schmitt, R. A. Segalman, T.F. Miller III, S. H. Tolbert, B. S. Dunn, S. R. Narayan, and B. C. Thompson, Dihexyl-substituted poly(3,4-propylenedioxythiophene) as a dual ionic and electronic conductive cathode binder for lithium ion batteries, Chem. Mater. 32 (2020) 9176—9189. DOI: 10.1021/acs.chemmater.0c02601
  36. Q. Yan, G. Whang, Z. Wei, S-T. Ko, P. Sautet, S. H. Tolbert, B. S. Dunn, and J. Luo A perspective on interfacial engineering of lithium metal anodes and beyond, Appl. Phys. Lett. 117 (2020) 080504. DOI: 10.1063/5.0018417
  37. L. Peng, Z. Wei, C. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H. Liu, C. S. Allen, X. Xu, A. I. Kirkland, I. Shakir, Z. A. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, and X. Duan, A fundamental look at electrocatalytic sulfur reduction reaction, Nat. Catal. 3 (2020) 762—770. DOI: 10.1038/s41929-020-0498-x
  38. J. L. Kaufman and A. Van der Ven, Ordering and structural transformations in layered KxCrO2 for K-ion batteries, Chem. Mater. 32 (2020) 6392—6400. DOI: 10.1021/acs.chemmater.0c01460
  39. J. M. Stauber, J. Schwan, X. Zhang, J. C. Axtell, D. Jung, B. J. McNicholas, P. H. Oyala, A. J. Martinolich, J. R. Winkler, K. A. See, T. F. Miller III, H. B. Gray, A M. Spokoyny, A super-oxidized radical cationic icosahedral boron cluster, J. Am. Chem. Soc. 142 (2020) 12948—12953. DOI: 10.1021/jacs.0c06159
  40. T. J. Aubry, K. J. Winchell, C. Z. Salamat, V. M. Basile, J. R. Lindemuth, J. M. Stauber, J. C. Axtell, R. M. Kubena, M. D. Phan, M. J. Bird, A. M. Spokoyny, S. H. Tolbert, and B. J. Schwartz, Tunable dopants with intrinsic counterion separation reveal the effects of electron affinity on dopant intercalation and free carrier production in sequentially doped conjugated polymer films. Adv. Functional. Mater. 30 (2020) 2001800. DOI: 10.1002/adfm.202001800
  41. N. H. Bashian, M. B. Preefer, J. Milam-Guerrero, J. Zak, C. Sendi, S. Ahsan, R. Vincent, R. Haiges, K. A. See, R. Seshadri, and B. C. Melot, Understanding the role of crystallographic shear planes on the electrochemical behavior of niobium oxyfluorides, J. Mater. Chem. A 8 (2020) 12623—12632. DOI: 10.1039/D0TA01406K
  42. M. B. Preefer, M. Saber, Q. Wei, N. H. Bashian, W. Zhang, G. Lee, J. Milam-Guerrero, E. S. Howard, R. C. Vincent, B. C. Melot, A. Van der Ven, R. Seshadri, and B. Dunn, Multielectron redox and insulator-to-metal transition upon lithium insertion in the fast-charging, Wadsley-Roth phase PNb9O25, Chem. Mater. 32 (2020) 4553—4563. DOI: 10.1021/acs.chemmater.0c00560
  43. C. J. Hansen, J. J. Zak, A.J. Martinolich, J. S. Ko, N. H. Bashian, F. Kaboudvand, A. Van der Ven, B. C. Melot, J. Nelson Weker, and K. A. See, Multielectron, cation and anion redox in lithium-rich iron sulfide cathodes, J. Am. Chem. Soc. 142 (2020) 6737—6749. DOI: 10.1021/jacs.0c00909
  44. J. S. Ko, C. H. Lai, J. W. Long, D. R. Rolison, B. S. Dunn, and J. Nelson Weker, Differentiating double-layer, pseudocapacitance, and battery-like mechanisms by analyzing impedance measurements in three dimensions, ACS Appl. Mater. Interfaces 12 (2020) 14071—14078. DOI: 10.1021/acsami.0c02020
  45. A. Likitchatchawankum, G. Whang, J. Lau, O. Munteshari, B. S. Dunn, and L. Pilon, Effect of temperature on irreversible and reversible heat generation rates in ionic liquid-based electric double layer capacitors, Electrochim. Acta 338 (2020) 135802. DOI: 10.1016/j.electacta.2020.135802

    2019

  46. O. Munteshari, A. Borenstein, R. H. DeBlock, J. Lau, Y. Zhou, A. Likitchatchawankun, R. Kaner, B. S. Dunn, and L. Pilon, In operando calorimetric measurements for activated carbon electrodes in ionic liquid electrolytes under large potential windows, ChemSusChem 13 (2019) 1—15. DOI: 10.1002/cssc.201903011
  47. F. Kaboudvand, J. Vinckeviciute, S. Kolli, M. D. Radin, A. Van der Ven, Phase stability and electronic structure of tin sulfide compounds for Li-ion batteries, J. Phys. Chem. C 123 (2019) 29086—29095. DOI: 10.1021/acs.jpcc.9b06902
  48. J. Luo, Let thermodynamics do the interfacial engineering of batteries and solid electrolytes, Energ. Storage Mater. 21 (2019) 50—60. DOI: 10.1016/j.ensm.2019.06.018
  49. O. Munteshari, Y. Zhou, B.-A. Mei, and L. Pilon, Theoretical validation of the step potential electrochemical spectroscopy (SPECS) and multiple potential step chronoamperometry (MUSCA) methods for pseudocapacitive electrodes, Electrochim. Acta 321 (2019) 134648. DOI: 10.1016/j.electacta.2019.134648
  50. J. L. Kaufman and A. Van der Ven, NaxCoO2 phase stability and hierarchical orderings in the O3/P3 structure family, Phys. Rev. Mater. 3 (2019) 015402. DOI: 10.1103/PhysRevMaterials.3.015402
  51. S. N. Steinmann, Z.-Y. Wei, and P. Sautet, Theory and experiments join forces to characterize the electrocatalytic interface, PNAS 116 (2019) 7611—7613. DOI: 10.1073/pnas.1903412116
  52. F. Calle-Vallejo, R. F. de Morais, F. Illas, D. Loffreda, and P. Sautet, Affordable estimation of solvation contributions to the adsorption energies of oxygenates on metal nanoparticles, J. Phys. Chem. C 123 (2019) 5578—5582. DOI: 10.1021/acs.jpcc.9b01211
  53. D. Jung, F. Raffan-Montoya, R. Ramachandran, Y. Zhang, T. Islamoglu, G. Marin, E. A. Qian, R. M. Dziedzic, O. K. Farha, S. I. Stoliarov, and A. M. Spokoyny, Cross-linked porous polyurethane materials featuring dodecaborate clusters as inorganic polyol equivalents, Chem. Commun. 55 (2019) 8852—8855. DOI: 10.1039/C9CC03350E
  54. M. D. Radin, J. Vinckeviciute, R. Seshadri, and A. Van der Ven, Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials, Nature Energy 4 (2019) 639—646. DOI: 10.1038/s41560-019-0439-6
  55. J. C. Axtell, M. S. Messina, J.-Y. Liu, D. Galaktionova, J. Schwan, T. M. Porter, M. D. Savage, A. I. Wixtrom, A. L. Rheingold, C. P. Kubiak, J. R. Winkler, H. B. Gray, P. Král, A. N. Alexandrova, and A. M. Spokoyny, Photooxidative generation of dodecaborate-based weakly coordinating anions, Inorg. Chem. 58 (2019) 10516—10526. DOI: 10.1021/acs.inorgchem.9b00935

Other products

  1. Professor Tom Miller of Caltech presenting a podcast on theory as it impacts energy storage: https://soundcloud.com/theoreticallyspeaking/efficient-battery-design
Return to the SCALAR homepage

Acknowledgement guidelines for the SCALAR EFRC

NB: These are not the complete guidelines. The complete document can be found on the shared Box folder.

1. Research solely supported by the EFRC

This work was supported as part of the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0019381.

2. Research solely supported by the EFRC and including graduate student/postdoctoral merit-based award fellowships.

This work was supported as part of the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0019381” A.J. acknowledges a graduate fellowship through XYZ foundation.

3. Research solely supported by the EFRC that included work at a multi-user facility.

This work was supported as part of the Center for Synthetic Control Across Length-scales for Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0019381”. Research at the Spallation Neutron Source and High Flux Isotope Reactor was supported by DOE, Office of Science, BES.

Return to the SCALAR homepage

SCALAR EFRC Title Bar