Spectroscopy | ||||||||||||
|
Reference Books on Spectroscopy / NMR Notes / Advanced NMR / Table of Exact Masses / Optical ActivityREFERENCE BOOKS ON SPECTROSCOPY |
|||||||||||
A. General Instructional BooksIntroduction to Organic Spectroscopy; Lambert, J. B.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. G.; Prentice Hall: Upper Saddle River, NJ, 1998. Spectrometric Identification of Organic Compounds; Silverstein, R. M.; Webster, F. X.; John Wiley: New York, 1998. Organic Spectroscopy; Crews, P.; Rodríguez, J.; Jaspars, M.; Oxford University Press: New York, 1998. Organic Spectroscopy; Kemp, W.; W. H. Freeman: New York, 1991. Interpreting Spectra of Organic Molecules; Sorrell, T. N.; University Science: Mill Valley, 1988. Organic Spectroscopy; Brown, D. W.; Floyd, A. J.; Sainsbury, M.; John Wiley: New York, 1988. Spectrometric Identification of Organic Compounds; Williams, D. H.; Fleming, I.; McGraw-Hill: New York, 1987. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry; Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; W. B. Saunders: Philadelphia, 1979. |
||||||||||||
B. Books on NMR TheoryABCs of FT-NMR; Roberts, J. D.; University Science Books: Sausalito, California, 2000. Principles of Nuclear Magnetic Resonance in One and Two Dimensions; Ernst, R. R.; Bodenhausen, G.; Wokaun, A.; Clarendon Press: Oxford, England, 1987. Two Dimensional Nuclear Magnetic Resonance in Liquids; Bax, A.; D. Reidel Publishing Co.: Dordrecht, Holland, 1982. |
||||||||||||
C. Books on NMR InterpretationApplications of Dynamic NMR Spectroscopy to Organic Chemistry; Oki, M.; VCH: New York, 1985, Methods in Stereochemical Analysis, Vol. 4. Biological Applications of Magnetic Resonance; Shulman, R. G., Ed.; Academic Press: New York, 1979. Carbon-13 NMR Based Organic Spectral Problems; Fuchs, P. L.; Bunnell, C. A.; John Wiley: New York, 1979. Carbon-13 NMR Data for Organometallic Compounds; Mann, B. R.; Taylor, B. F. Academic: New York, 1981. Carbon-Carbon and Carbon-Proton NMR Couplings: Applications to Organic Stereochemistry and Conformational Analysis; Marshall, J. L.; VCH: New York, 1983, Methods in Stereochemical Analysis, Vol. 2. Chemical Shift Ranges in Carbon-13 NMR Spectroscopy; Bremser, W.; Franke, B.; Wagner, H.; VCH: New York, 1982. Lanthanide Shift Reagents in Stereochemical Analysis; Morrill, T. C.; VCH: New York, 1987, Methods in Stereochemical Analysis, Vol. 5. Modern NMR Spectroscopy; Sanders, J. K. M.; Hunter, B. K.; Oxford: New York, 1993. Modern NMR Spectroscopy: A Workbook of Chemical Problems; Sanders, J. K. M.; Constable, E. C.; Hunter, B. K.; Oxford: New York, 1990. Modern NMR Techniques for Chemistry Research; Derome, A. E.; Pergamon:New York, 1987. NMR of Proteins and Nucleic Acids; Wüthrich, K.; Wiley and Sons: New York, 1986. Phosphorous-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J.G., Quin, L.D., Eds.; VCH: New York, 1987. Structure Elucidation by Modern NMR; Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W.; Springer-Verlag: New York, 1989. Stereochemical Applications of NMR Studies in Rigid Bicyclic Systems; Marchand, A. P.; VCH: New York, 1982, Methods in Stereochemical Analysis, Vol. 1. Structure Elucidation by Modern NMR; Duddeck, H.; Dietrich, W.; Springer-Verlag: New York, 1989. The Nuclear Overhauser Effect in Structural and Conformational Analysis; Neuhaus, D.; Williamson, M.; VCH: New York, 1989. Two-Dimensional NMR Methods for Establishing Molecular Connectivity; Martin, G. E.; Zektzer, A. S.; VCH: New York, 1988. Two-Dimensional NMR Spectroscopy Applications for Chemists and Biochemists; Croasmun, W. R.; Carlson, R. M. K.; VCH: New York, 1987, Methods in Stereochemical Analysis, Vol. 9.
|
||||||||||||
NMR NOTES
|
||||||||||||
NMR Water SignalsSolvent d of H2O (or HOD) Acetone 2.7
|
||||||||||||
Effects of Steric CompressionProton signals shift to lower field Carbon signals shift to higher Field |
||||||||||||
Commonly Found ImpuritiesEther Hydroperoxide Tygon Tubing Plastisizer - Diisooctylphthalate |
||||||||||||
ADVANCED NMR
|
||||||||||||
ONE DIMENSIONAL NMR TECHNIQUESDEPT (Distortionless
Enhancement of NMR Signals by Polarization Transfer) INEPT (Insensitive Nuclei Enhanced
by Polarization Transfer) NOE (Nuclear Overhauser Effect) |
||||||||||||
TWO DIMENSIONAL NMR TECHNIQUESNOESY (Nuclear Overhauser Effect
Spectroscopy) ROESY (Rotating Frame Overhauser
Enhancement Spectroscopy) COSY (Correlated Spectroscopy) COLOC (Correlated Spectroscopy for Long-Range
Couplings) SECSY (Spin Echo Spectroscopy) EXTASY (Exchange Interaction
Spectroscopy) J-Resolved 2D NMR HetCor (Heteronuclear Shift Correlation) HMBC (Heteronuclear Multiple Bond
Correlation) HMQC (Heteronuclear Multiple Quantum
Coherence) HOHAHA (Homonuclear Hartmann Hahn) INADEQUATE (Incredible Natural Abundance
Double Quantum Transfer Experiment) INSIPID (Inadequate Sensitivity Improvement
by Proton Indirect Detection) TOCSY (Total Correlation Spectroscopy)
|
||||||||||||
TABLE OF EXACT MASSES
|
||||||||||||
Element % Natural Exact Mass Element
% Natural Exact Mass Abundance Abundance Al 100 26.9815 Mg 78.7 23.985 Mn 100 54.938 Mo 23.8 97.9055 N 99.6 14.0031 Na 100 22.9898 Nb 100 92.9060 Ni 68.3 57.9353 O 99.8 15.994915 Os 40.0 191.9622 P 100 30.97376 Pb 52.3 207.9766 Pd 27.3 105.9032 Rb 72.2 84.9117 Re 62.5 186.9560 Rh 100 102.9048 Ru 31.6 101.9037 S 95.0 31.97207 Sb 57.3 120.9038 Sc 100 44.9559 Se 49.8 79.9165 Si 92.2 27.9769 Sn 24.0 117.9018 Sr 82.6 87.90565 Te 34.5 129.9067 Ti 73.9 47.9479 Tl 70.5 204.9745 V 99.8 50.9440 W 30.6 183.9510 Zn 48.9 63.9291 Zr 51.5 89.9043
|
||||||||||||
OPTICAL ACTIVITY
|
||||||||||||
Optical rotation ( a ) is the observed
rotation for a given sample. Specific optical rotation ( [a] ) is corrected for concentration and pathlength, so different samples can be compared. Note that rotations are solvent and wavelength dependent. [a]tl = 100a/lc a = observed rotation Example of reporting a specific rotation: [a]22589 = 24.5 (c = 1.1, MeOH) Enantiomeric Excess = Optical Purity = Optical Yield ee = | % R - % S | = [a]tl (obs) x 100 / [a]tl (pure) |