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ABSTRACT
A low-cost approach for stochastically sampling static exchange during time-dependent Hartree–Fock-type propagation is presented. This
enables the use of an excellent hybrid density functional theory (DFT) starting point for stochastic GW quasiparticle energy calculations.
Generalized Kohn–Sham molecular orbitals and energies, rather than those of a local-DFT calculation, are used for building the Green func-
tion and effective Coulomb interaction. The use of an optimally tuned hybrid diminishes the starting point dependency in one-shot stochastic
GW, effectively avoiding the need for self-consistent GW iterations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0219839

I. INTRODUCTION

Kohn–Sham density functional theory (DFT) with local and
semi-local functionals has been successful in calculating ground
state energies and configurations but is insufficient for processes
that involve excited states, such as (inverse) photoemission spec-
troscopy, as it gives too small bandgaps and incorrect quasiparticle
(QP) energies.1 An established alternative is the GW approximation
to many-body perturbation theory (MBPT) for ab initio description
of QPs.2–4

The GW method approximates the single-particle self-energy,
which contains all many-body effects, as Σ ≈ iGW, where G is the
Green function that gives the probability amplitude of a QP to
propagate between two space-time points and W is the screened
Coulomb interaction. Common implementations of GW perturba-
tively correct the mean-field orbital energies, providing significant
improvements; however, the method’s perturbative nature yields
observables that strongly depend on the initial set of mean-field
orbitals and energies.5,6 Therefore, Hedin’s GW equations should
ideally be solved iteratively.7

Neglecting the vertex function, the GW method begins with the
noninteracting Green function, G0, built with mean-field orbitals,
and then one computes the screened interaction W with these same
orbitals to obtain the self-energy Σ. In fully self-consistent GW
(sc-GW), the dressed Green function G = G0 +G0ΣG is then self-
consistently updated till convergence. In contrast, one-shot G0W0
avoids updating the Green function and uses the noninteracting

form. The least costly form of partial self-consistency, eigenvalue
self-consistent GW0 (ev-GW0), follows this framework of freezing
W and only updating the eigenvalues entering G.8,9

Many groups have studied the performance of GW ranging
from partial to full self-consistency.10–13 Eigenvalue-only schemes
improve G0W0 results, and QP (qs-GW) self-consistency can fully
remove the starting point dependency in the QP energies.14,15 The
qs-GW method approximates the dynamical non-Hermitian self-
energy Σ(ω) with a static, non-local, and Hermitian operator.
A low-scaling qs-GW well suited for molecules has been developed
by Förster and co-workers.16,17

Recent work has found that a faithful description of molec-
ular ionization potentials (IPs) can be achieved with sc-GW.18

Spectral properties of finite systems tend to also improve with self-
consistency.19 Furthermore, sc-GW gives access to thermodynamic
quantities, including the total ground state energy, electronic den-
sity, and equilibrium bond lengths.19–21 However, iteratively solv-
ing the Dyson equation in a self-consistent field procedure often
requires at least an order of magnitude increase in the computational
cost of a G0W0 calculation.

For molecular systems with hundreds to thousands of elec-
trons, a more realistic strategy is to improve the mean-field starting
point within G0W0. For accurate frontier QP energies, long-range
corrected (LC) hybrid functional DFT starting point G0W0 per-
forms at least as well as the various types of self-consistency. Among
local, semi-local, global, and RSH-DFT starting points, the use of
an optimally tuned (OT)-RSH-DFT starting point has been shown
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to give the lowest mean absolute errors (MAEs) relative to high-
quality CCSD(T) values for the first IPs of the GW100 family of
molecules.22,23 Furthermore, OT hybrid starting point G0W0 has
been shown to give excellent first electron affinities (EAs) and
HOMO–LUMO gaps, even when rivaled against more intensive
static second-order screened exchange (SOSEX) and fully dynamic
G3W2 methods.24 (For the remainder of this paper, the terms
OT-RSH-DFT and hybrid DFT are used interchangeably.)

We have developed an efficient hybrid DFT method
utilizing sparse-stochastic compression of the exchange ker-
nel.25 [Note that sparse-stochastic compression was first developed
for stochastic GW (sGW) to reduce memory costs associated with
time-ordering the retarded effective interaction WR.26–28] For hybrid
DFT, the exchange kernel is fragmented in momentum space with
the vast majority of wave-vectors k represented through a small
basis of sparse-stochastic vectors, except for a small fixed number of
long-wavelength (low-k) components that are evaluated determin-
istically. These hybrid eigenstates, energies, and Hamiltonian serve
as the DFT starting point of the present method.

Fully stochastic OT-RSH-DFT was previously used as an alter-
native to GW for frontier QP energies of large silicon nanocrystals.29

We also developed a tuning procedure for OT hybrids to reproduce
the GW fundamental bandgaps of periodic solids.30 The present
hybrid DFT starting point has very tiny stochastic error and differs
from previous stochastic methods by avoiding stochastic sampling
of the orbitals or density matrix.

In this article, sGW is extended to hybrid functional starting
points. The sGW algorithm is briefly reviewed, and we emphasize
specific parts of the method that have been modified for employ-
ing hybrid rather than local exchange–correlation (XC) functionals.
In addition, we implement a “cleaning” procedure during time-
propagation to avoid numerical instabilities, as we have recently
done in generating a stochastic W for Bethe–Salpeter equation (BSE)
spectra.31,32 As demonstrated in Ref. 33, stochastic fluctuations
worsen for hybrid DFT (compared to local/semi-local XC) starting-
point G0W0 calculations because of the added sampling of the static
exchange. The cleaning procedure significantly reduces the stochas-
tic error in QP energies and enables routine hybrid starting-point
G0W0 for molecular systems with thousands of valence electrons.
The new approach is tested on a set of molecules with an OT-RSH
functional. For technical details of the sGW method, we refer to
Refs. 26–28.

II. THEORY
The stochastic paradigm for G0W0 uses the space-time repre-

sentation of the single-particle self-energy,

Σ(r, r′, t) = iG0(r, r′, t)W0(r, r′, t+), (1)

which takes a simple direct product form of the noninteracting
single-particle Green function G0 and screened Coulomb interaction
W0. In Sec. II A, we provide a stochastic form of G0 and formulate
how to obtain QP energies with a hybrid DFT basis. The sampling
of static exchange during propagation of the Green function is also
discussed.

It is convenient to split the self-energy as Σ = ΣX + ΣP, with an
instantaneous Fock exchange part and time-dependent polarization
part, respectively. To minimize the stochastic error of QP energies

obtained with the sGW method, the Fock exchange contribution
ΣX to the self-energy is evaluated deterministically, while ΣP is
evaluated by a stochastic linear-response time-dependent Hartree
propagation (sTDH),26 equivalent to the standard random phase
approximation (RPA). In Sec. II B, the sTDH approach is presented
and we introduce a new projection routine that reduces statistical
fluctuations when evaluating the action of W0 on a source term.

A. Stochastic GW in space-time domain
1. Single-particle Green’s function

In sGW, the single-particle Green function is converted to a
random averaged correlation function. We first define the opera-
tor form of the zero-order Generalized Kohn–Sham (GKS) Green
function,

iG0(t) = e−iH0t
[(I − P)θ(t) − Pθ(−t)], (2)

where I is the identity matrix and P = ∑n≤Nocc
∣ϕn⟩⟨ϕn∣ projects onto

the occupied subspace of the ground state GKS Hamiltonian,

H0 = −
1
2
∇

2
+ ve−N + vH[n0] + v

γ
XC[n0] + Xγ

[ρ0]. (3)

Assuming closed-shell systems, the static density matrix is

ρ0(r, r′) = 2 ∑
n≤Nocc

ϕn(r)ϕ∗n(r
′
), (4)

and the diagonal elements yield the density n0(r) = ρ0(r, r′ = r).
H0 includes the kinetic energy, overall electron-nuclear poten-
tial, Hartree potential, exchange–correlation potential, and long-
range exact exchange. The range-separation parameter γ divides the
exchange interaction into short- and long-range components. For
the short-range part, a local (or semi-local) exchange energy is used,
while for the long-range part, a parameterized exact exchange oper-
ator is used.34,35 The range-separation parameter is optimally tuned
to each system of interest, and the tuning procedure enforces the
ionization potential theorem of DFT.36

Stochastic projection onto the occupied and unoccupied sub-
spaces of the GKS Hamiltonian (as in Refs. 9 and 28) requires a
complete orthogonal basis to be defined on the grid. An approx-
imate stochastic resolution of the identity (ROI)37 is composed
of Nζ vectors, where each vector has a random signed value of
ζ(r) = ±1/

√
dV at every grid-point, in which dV is the vol-

ume element. Statistical averaging of these Nζ vectors produces
{ζ(r)ζ(r′)}ζ = δr,r′/dV = δ(r − r′), where the first and second delta
symbols refer, respectively, to the Kronecker and Dirac delta func-
tions. The Nζ vectors thus make an approximate identity matrix
I ≃ 1

Nζ
∑ζ ∣ζ⟩⟨ζ∣, which is exact in the limit Nζ →∞.

Inserting this identity to Eq. (2) produces

G0(r, r′, t) ≃
1

Nζ
∑
ζ
ζ̃(r, t)ζ∗(r′), (5)

where ζ̃(r, t) is divided into positive and negative times correspond-
ing to the propagation of electrons and holes,

ζ̃(r, t) ≡
⎧⎪⎪
⎨
⎪⎪⎩

⟨r∣e−iH0tP∣ζ⟩, t < 0,

⟨r∣e−iH0t
(I − P)∣ζ⟩, t > 0.
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In contrast to deterministic methods where exact eigenstates
are evolved in time, a stochastic evaluation of the Green func-
tion requires propagation of randomly projected states; this makes
the extension to hybrid functional starting points non-trivial. We
discuss how to efficiently apply Xγ

[ρ0] at each time step in Sec. II A 3.
To summarize, the stochastic ROI converts G0 to a stochastic

correlation function. Insertion of the Nζ vectors enables a nested
stochastic sampling procedure where, for every ζ (which samples the
Green function), one defines an additional set of {ηl∣l = 1, . . . , Nη}

stochastic occupied orbitals for the sTDH propagation to obtain the
polarization self-energy ΣP(t), detailed in Sec. II B 1.

2. QP energies with hybrid functionals
The input GKS MOs and energies fulfill H0ϕj = εjϕj. In this

section, the GKS orbital energy is expressed as a sum of three parts,

ε ≡ ⟨ϕ∣Hnon−xc + v
γ
XC + Xγ

∣ϕ⟩, (6)

where

Hnon−xc = −
1
2
∇

2
+ ve−N + vH[n0]. (7)

In a one-shot calculation, the diagonal GW QP energy is then
perturbatively evaluated as

εQP
= ⟨ϕ∣Hnon−xc + ΣX + ΣP(ω = εQP

)∣ϕ⟩, (8)

where ΣX is the Fock exchange self-energy operator with diagonal
element for orbital ϕ,

⟨ϕ∣ΣX∣ϕ⟩ = −∫
ϕ∗(r)ϕ(r′)
∣r − r′∣

ρ0(r, r′)dr′dr, (9)

and ΣP is the polarization self-energy operator.
To avoid re-evaluating the approximate long-range exact

exchange Xγ already done once in the hybrid DFT stage, we write

εQP
= ε + Δ, (10)

where

Δ = −δε0 + ⟨ϕ∣ΣX + ΣP(ω = εQP
)∣ϕ⟩. (11)

Here, δε0 ≡ ε − ⟨ϕ∣Hnon-xc∣ϕ⟩ contains the approximate hybrid long-
range exchange and short-range LDA XC potential from the GKS
calculation.

3. Stochastic sampling of static exchange
The GKS Hamiltonian (including Xγ

[ρ0]) must be applied at
every time step when acting with G0(t) and W0(t). Below, we detail
the stochastic sampling for the Green function. This is done analo-
gously for the sTDH stage. The action of the long-range exchange
operator Xγ

[ρ0] in the static H0 is approximated very simply as

e−iXγdt
≈ Cnorm(1 − iXγdt), (12)

where Cnorm is a normalization factor to conserve the norm of the
propagated states. The action of e−iXγdt must be repeatedly evaluated
at every time step, and to do this, we develop an improvement of

earlier approaches. A previous approach to implement long-range
explicit exchange starting points for sGW33 sampled the same set
of stochastic orbitals used for propagation, resulting in increased
stochastic noise. This issue also appeared in early work on the
stochastic BSE approach for optical spectra.38

To overcome these deficiencies, we first introduce an interme-
diate basis of Nβ random functions,

βν(r) = ∑
i∈Nocc

aiνϕi(r), (13)

with coefficients

aiν =
1
√

Nβ
eiθ, θ ∈ [0, 2π]. (14)

The coefficients draw a random phase from the complex unit circle
and give an equal amplitude for each ϕi orbital in the summation.
These functions randomly scramble the information of the occupied
subspace and give an approximate ground state density matrix,

p0(r, r′) ≃ ∑
ν∈Nβ

βν(r)β∗ν (r
′
). (15)

We then prepare at every time step a new random vector,

b(r, t) = ∑
ν∈Nβ

± βν(r). (16)

This vector is an instantaneous random linear combination of
the finite βν functions that themselves stochastically sample the
occupied space.

Since the exchange operator is time-independent, the βν func-
tions do not need to be updated at every time step. This differs
from previous stochastic TDHF (time-dependent Hartree–Fock)
approaches where Xγ is based on ρ(t) rather than ρ0.38 Sampling
all the orbitals at every time step would be expensive, so we use
this intermediate step of the βν functions. The required number of
random occupied functions is quite small, with Nβ ≈ 50 used in this
work. Convergence with this parameter is discussed in Sec. III.

Now, we are able to evaluate the action of the long-range
exchange operator on an arbitrary state ψ,

⟨r∣Xγ
∣ψ⟩ = −b(r, t)∫ vγ(∣r − r′∣)b∗(r′, t)ψ(r′)dr′, (17)

where vγ(∣r − r′∣) = erf(γ∣r − r′∣)/∣r − r′∣ is the long-range exchange
kernel. This stochastic sampling removes the sum over occupied
states that appears when evaluating the action of exact exchange on
a general ket.

B. Obtaining the polarization self-energy ΣP

1. Stochastic TD-Hartree propagation
The polarization self-energy is evaluated on the real-time

axis through the causal (retarded) linear response to an exter-
nal test charge. Deterministically, this would be done through a
time-dependent Hartree (TDH) propagation. However, TDH is pro-
hibitive for large systems as one has to propagate all occupied
orbitals. The stochastic approach circumvents this problem by per-
turbing and propagating a small number of orbitals that are each a
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random linear combination of all occupied states. Here, we outline
the parts of the sTDH propagation that relate to using an underlying
GKS Hamiltonian. For a more detailed derivation of sTDH, we refer
to Ref. 28.

For each vector ζ, we define a small set of Nη(≈ 10 − 20)
stochastic orbitals,

ηl(r) = ∑
i∈Nocc

ηilϕi(r), (18)

where ηil = ±1 and {ϕi} are the occupied GKS eigenfunctions. We
emphasize that these ηil coefficients are different than the aiν coef-
ficients for sampling the static exchange. The use of numerically
independent random bases helps avoid numerical bias in our results.

For orbital ϕn, computing the diagonal element of the polar-
ization self-energy, ⟨ϕn∣ΣP(t)∣ϕn⟩, requires that these stochastic
occupied functions will be perturbed,

ηλl (r, t = 0) = e−iλvpertηl(r), (19)

with a Hartree-like potential vpert(r) ≡ ∫ ∣r − r′∣−1ζ(r′)ϕn(r
′
)dr′,

where λ is a perturbation strength ≈10−4 Ha−1. These states are then
evolved ηλl (r, t + dt) = e−iHλ(t)dtηλl (r, t) under the RPA (i.e., TDH)
Hamiltonian,

Hλ
(t) = H0 + vH[nλ(t)] − vH[n0], (20)

with the split-operator technique. Here, nλ(r, t) ≡ 1
Nη
∑l ∣η

λ
l (r, t)∣2,

and note that an additional set of unperturbed λ = 0 stochastic
orbitals must also be propagated. From the potential difference, one
obtains the retarded response,

uR
(r, t) =

1
λ
(vH[nλ(r, t)] − vH[nλ=0

(r, t)]). (21)

This time-dependent potential accounts for the variation in the
Hartree field due to the introduction of a QP at t = 0.

The uR
(r, t) potential [Eq. (21)] must first be time-ordered

u(r, t) = T uR
(r, t) to yield the time-domain GW polarization

self-energy,

⟨ϕn∣ΣP(t)∣ϕn⟩ ≈
1

Nζ
∑
ζ
∫ ζ̃(r, t)ϕn(r)u(r, t)dr, (22)

where u(r, t) produces the action of the time-ordered effective
interaction on the stochastic test charge,

u(r, t) = ∫ W0(r, r′, t)ζ(r′)ϕn(r′)dr′. (23)

The time-ordering procedure uses the connection between time-
ordered and retarded quantities in Fourier space.26 Our previous
work28 reduces the memory costs of storing to disk uR

(r, t) on every
core, by using the sparse-stochastic compression sampling tech-
nique. All simulations in this work uses Nξ = 10 000 sparse vectors
to time-order retarded quantities: ⟨ξ∣uR

(t)⟩→ ⟨ξ∣u(t)⟩. The ΣP(t)
elements are then Fourier transformed to yield the polarization
self-energy.

2. Orthogonality routine
Numerical instabilities during sTDH propagation may occur

due to the contamination of the excited component ηλl (t) − η
λ=0
l (t)

by occupied state amplitudes. This artifact of the stochastic method
is greatly alleviated by a method we introduced earlier in our BSE
work (see Ref. 31), i.e., periodically “cleaning” the stochastic orbitals.
More specifically, at every Mth time step, enforce orthogonality of
the stochastic perturbed propagated states to all GKS occupied states
by projecting onto the virtual subspace,

ηλl (t)→ ηλ=0
l (t) + (I − P)(ηλl (t) − η

λ=0
l (t)), (24)

and then re-normalizing the “cleaned” ηλl (t) vectors. For the present
simulations, this projection is done every M = 10 time steps, where
dt = 0.05, and the overall simulation time is 50 a.u. While previ-
ous implementations of sTDH in sGW propagated the ηλl (t) and
ηλ=0

l (t) vectors separately, this added projection step requires now
the simultaneous propagation of the two sets of states.

III. RESULTS
We test hybrid-sGW on various finite molecules, includ-

ing urea, a series of polycyclic aromatic hydrocarbons, a model
chlorophyll-a (Chla) monomer dye, and a hexamer photosyn-
thetic dye complex found at the reaction center of photosystem
II (RC-PSII).39

Table I shows the fundamental bandgaps for several
approaches: local and hybrid DFT, stochastic GW based on
an LDA starting point (one-shot and eigenvalue-iterative), and
the present hybrid starting-point stochastic GW (one-shot and
eigenvalue-iterative). The simplified eigenvalue-iterative stochastic
GW, developed in Ref. 9, is denoted Δ̄GW0. The ionization poten-
tials (IPs) of the same molecules are shown in Table II. The available
reference values are provided for both the fundamental gaps
and IPs.

Comparing the LDA and OT-RSH starting points, using the lat-
ter raises both the gap and IP by roughly 0.1–0.5 eV. We observe
that, except for hexacene, the stand-alone hybrid-DFT eigenvalues
serve as an excellent estimate for the IP and gap, as eigenvalue
iterative Δ̄GW0 barely changes the results.

For the frontier QP energies of larger acenes, such as hexacene,
it is well known40 that both one-shot G0W0 and ev-GW schemes
qualitatively differ from reference CCSD(T) estimates. In Ref. 33,
only after the addition of a vertex correction was the LUMO QP
energy for hexacene sufficiently increased so that the fundamental
gap was in excellent agreement with the reference CCSD(T) values
of Ref. 40.

The sGW calculations introduce correlation via ΣP, which low-
ers the IPs and gaps of the acenes. However, for urea and the dye
systems, the sGW IPs and gaps are slightly raised relative to the
hybrid-DFT.

Figure 1 shows convergence of the IP of naphthalene, tetracene,
and hexacene with respect to the number of Nβ intermediate-
exchange stochastic functions. These are used to sample the action
of Xγ

[ρ0] on all occupied states during orbital propagation. Going
beyond Nβ = 50 has minimal effect on the HOMO, and the overall
error in the HOMO energy barely changes with Nβ. We have verified

J. Chem. Phys. 161, 114116 (2024); doi: 10.1063/5.0219839 161, 114116-4

Published under an exclusive license by AIP Publishing

 19 Septem
ber 2024 22:22:49

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE I. Fundamental bandgaps (in eV) using LDA- and hybrid-DFT starting points (with associated γ) with associated statistical error for various molecules. The literature
CCSD(T) values for oligoacenes are from Ref. 40. The ev-GW fundamental bandgaps for the Chla monomer and the RC-PSII hexamer are from Ref. 39, which uses a modified
version of the ADF 2022 software.41

Molecule γ (bohr−1
) LDA-DFT LDA + sGW LDA + Δ̄GW0 Hybrid-DFT Hybrid + sGW Hybrid + Δ̄GW0 References

Urea 0.380 4.66 9.40 (0.07) 10.39 (0.07) 10.32 10.58(0.03) 10.61 (0.03)
Naphthalene 0.285 3.34 7.60 (0.05) 7.97 (0.05) 8.63 8.47 (0.04) 8.46 (0.04) 8.73
Tetracene 0.220 1.63 5.07 (0.03) 5.35 (0.03) 5.82 5.73 (0.04) 5.72 (0.04) 6.14
Hexacene 0.200 0.57 3.46 (0.05) 3.66 (0.05) 4.26 4.05 (0.04) 4.04 (0.04) 4.85
Chla 0.160 1.40 3.73 (0.06) 3.88 (0.06) 4.37 4.22 (0.04) 4.21 (0.04) 4.41
RC-PSII 0.120 1.23 3.82 (0.05) 3.97 (0.05) 3.82 3.98 (0.05) 4.00 (0.05) 4.17

TABLE II. Ionization potentials (in eV) of finite molecules, taken as I = −εQP
HOMO, with statistical error of HOMO QP energy. Experimental values for urea and Chla are from

Refs. 42 and 43, respectively. High-quality CCSD(T) values for acenes are from Ref. 40.

Molecule LDA + sGW LDA + Δ̄GW0 Hybrid-DFT Hybrid + sGW Hybrid + Δ̄GW0 References

Urea 9.35 (0.07) 10.30 (0.07) 10.58 10.77 (0.05) 10.79 (0.05) 10.28
Naphthalene 8.21 (0.04) 8.44 (0.04) 8.68 8.66 (0.03) 8.63 (0.03) 8.25
Tetracene 7.03 (0.02) 7.22 (0.02) 7.37 7.36 (0.03) 7.36 (0.03) 6.96
Hexacene 6.23 (0.04) 6.38 (0.04) 6.59 6.50 (0.05) 6.49 (0.05) 6.32
Chla 6.42 (0.06) 6.58 (0.06) 6.68 6.69 (0.05) 6.70 (0.05) 6.1
RC-PSII 5.76 (0.05) 5.91 (0.05) 6.13 6.26 (0.05) 6.27 (0.05)

FIG. 1. Convergence of the ionization potential (IP) of linear acenes (hybrid-DFT
+ sGW) with respect to Nβ, the number of intermediate stochastic functions for
evaluating the static exchange [Eq. (13)].

for the RC-PSII, with Nocc = 660 occupied orbitals, that increasing
Nβ to 100 does not change the results.

Here, we review the added computational cost in using hybrid
functional starting points for stochastic G0W0. Operation-wise, for
each time step, preparing the vector b(r, t) costs NβN g operations
and the evaluation of the static exchange requires NηN gN g opera-
tions, where N g is the number of grid points. A technical point is
that the convolutions in Eq. (17) use the Martyna–Tuckerman grid-
doubling approach, so the computational effort is higher by an order
of magnitude.44

We finally showcase the power of this stochastic framework
by studying the 1320 valence electron RC-PSII. The reported

OT-RSH-DFT starting point stochastic GW QP energies are con-
verged within a statistical error of 0.05 eV using only Nζ = 1024
stochastic runs. Both the nuclear coordinates and reference atomic
basis-set ev-GW energies for this system are from Ref. 39. The ref-
erence calculation uses the Perdew–Burke–Ernzerhof (PBE) global
hybrid with 40% exact exchange and includes scalar relativistic
effects. We obtain fairly good agreement (<0.2 eV discrepancy)
between the reference ev-GW fundamental bandgap and one-shot
sGW with an optimally tuned hybrid starting point. For this large
complex, our tuned hybrid has a range-separation parameter of
γ = 0.12 bohr−1. This small value indicates weak long-range
exchange, and it is reasonable that the sGW bandgap of RC-PSII
obtained with this starting point is lower than with the global hybrid
functional starting point (i.e., the global hybrid method opens the
gap more than the tuned hybrid).

IV. CONCLUSIONS
We introduced an approach to efficiently sample static

exchange during TDHF-type propagation. This general method is
applied here to implement hybrid-DFT starting points to stochas-
tic GW calculations. Our results use the long-range Baer–
Neuhauser–Lifshitz (BNL) functional,45 but the method is amenable
to a wide range of hybrids; future studies will benchmark sGW with
different hybrid-DFT starting points.

The stochastic sampling approach to evaluate long-range
exchange during propagation of G0 and W0 is only ≈1.5 − 2 times
more expensive than using an LDA starting point sGW. Because
the long-range exchange operator functionally depends on the static
density matrix, ρ0, a stochastic sampling approach is the optimal
choice as one can sample the occupied subspace only once.
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The hybrid sGW gaps presented are quite close (usually within
less than 0.5 eV) to the hybrid-DFT gaps, so eigenvalue self-
consistency makes only a further minor difference in final bandgaps.
One explanation is that the starting GKS energies correspond to
a Hamiltonian with the same −1/r asymptotic behavior in the
exchange potential as the true GW Hamiltonian. This makes GKS
energies a much better starting point for the GW perturbation
expansion [Eq. (8)] than LDA energies that possess exponential
decay in their exchange potential.

The hybrid-DFT frontier eigenvalues effectively mimic the
GW HOMO and LUMO QP energies. This holds promise for
studying neutral excitations in the stochastic GW-BSE (see Refs. 31
and 32), where the hybrid-DFT eigensystem will be used for the
electron–hole exciton basis, rather than true QP orbitals and ener-
gies. This could avoid the need to perform GW corrections to DFT
eigenvalues altogether, while having a minor impact on the resulting
optical spectrum.

In future work, sparse-stochastic exchange will be applied to
vertex corrections of the GW self-energy. Vertex corrections have
been found to be important for accurate description of plasmons.
More fundamentally, inclusion of an approximate non-local vertex
can partially correct the self-screening introduced when comput-
ing the self-energy in the RPA.46,47 It has been shown that a TDHF
vertex provides a screened interaction W that is completely free
of self-screening error.48–50 Previous work on low-order stochas-
tic approximations of the vertex function amounts to introduc-
ing a scaled non-local exchange term in the polarization part of
the self-energy.51–52 Our sparse-stochastic exchange technique with
orbital-cleaning would efficiently tackle this calculation.
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