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ABSTRACT: We extend our recently developed sparse-stochastic fragmented
exchange formalism for ground-state near-gap hybrid DFT to calculate absorption
spectra within linear-response time-dependent generalized Kohn−Sham DFT (LR-
GKS-TDDFT) for systems consisting of thousands of valence electrons within a
grid-based/plane-wave representation. A mixed deterministic/fragmented-stochastic
compression of the exchange kernel, here using long-range explicit exchange
functionals, provides an efficient method for accurate optical spectra. Both real-time
propagation as well as frequency-resolved Casida-equation-type approaches for
spectra are presented, and the method is applied to large molecular dyes.

1. INTRODUCTION
Time-dependent density functional theory (TDDFT)1 has
been extensively used for predicting photoelectron spectra,2−6

material screening, optoelectronic device design,7−11 and
nonlinear optical response.12,13 A common approximation for
the exchange−correlation kernel is the local density approx-
imation (LDA), which in DFT is notorious for under-
estimating the band gap in periodic compounds and the
ionization potential in finite systems.14 Similarly, in time-
dependent calculations, the commonly used adiabatic LDA
(ALDA) approximation often gives incorrect absorption peaks
and shifted cutoff regions in higher-harmonic generation
spectra. More sophisticated methods, such as the Bethe−
Salpeter equation (BSE), TD-CIS(D), or TD-CC2, give a
better description of electron correlation and result in a more
accurate description of electron dynamics in both the linear-
response and strong-field regime.15 However, these methods
can scale poorly with system size, and significant computa-
tional or theoretical developments are still needed to address
large systems.
Hybrid functionals in DFT admix exact exchange with an

approximate exchange−correlation (XC) functional.16 Inclu-
sion of exact exchange helps improve band gaps and alleviate
the self-repulsion in the Kohn−Sham (KS) potential.17 Global
hybrids, such as PBE0 and B3LYP, include a fractional amount
of exchange at all length scales.18 On the other hand, range-
separated hybrid (RSH) functionals partition the Coulomb
interaction into a short-range component, treated locally, and a
long-range part treated explicitly. The strategy is to correct the
asymptotic behavior of the KS potential while maintaining a

local (or semilocal) XC potential description at short
range.19,20

Popular RSHs, such as CAM-B3LYP, use a fixed range−
separation parameter, here denoted by γ, to partition the short-
and long-range components of the exchange.21,22 Optimally
tuned (OT)-RSHs obtain γ by enforcing a physical condition
on the system of interest based on first-principles.20 OT-RSH
functionals recover the correct −1/r asymptotic behavior of
the exchange potential, essential for an accurate description of
charge-transfer excitations and electron−hole bound
states.17,23 In this work, we use the Baer−Neuhauser−Lifshitz
(BNL) OT-RSH functional.20 For this functional, the range-
separation parameter γ is obtained by enforcing piece-wise
linearity of the total energy with electron number.17

For excited states, ALDA-TDDFT simplifies the time-
dependent many-body problem to an independent orbital
propagation. Use of a hybrid functional retains this
independent orbital propagation and significantly improves
the ailments of ALDA. Previous TDGKS studies with the BNL
functional accurately described the vertical excitation energies
of a range of acenes, achieving excellent agreement with
experimental and coupled cluster values.24 Furthermore, an
OT BNL functional was able to correctly predict charge-
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transfer excitations in light-harvesting molecules.25,26 However,
this incurs a steep computational scaling.
Methods to reduce the computational scaling within a given

TDGKS implementation depend on the choice of basis-set.
(We use below the terms TDGKS and hybrid-TDDFT
interchangeably.) In atomic-orbital basis sets, efforts to reduce
the cost of exact exchange include density fitting, Cholesky
decomposition, resolution of the identity approaches,27−31 and
spatial localization methods.32,33 In plane-wave (PW) and grid-
based representations, projection methods have been devel-
oped that circumvent the use of virtual orbitals.34,35 Adaptively
compressed exchange, a low-rank decomposition method, has
significantly reduced the cost of exchange and has been applied
to excited states.36 Diagonal hybrid TDDFT has also been
implemented which balances explicit diagonal exchange
elements in the Casida matrix with off-diagonal elements
approximated by an LDA kernel.37,38

In our previous work, we developed a real-time, grid-based
TDGKS algorithm that reduces the scaling of exact exchange
by a stochastic decomposition of the time-dependent density
matrix and the Coulomb kernel.23 A similar stochastic
approach in the frequency domain has also been developed.39

Here, we present an alternate approach with very little
stochastic error by introducing a mixed deterministic/sparse-
stochastic sampling of the Coulomb kernel in k-space and
avoiding a stochastic resolution of the density matrix. The
numerically large low-k components of the exchange kernel are
treated deterministically and the many numerically small high-
k elements are represented through a sparse-stochastic basis.
The size of this sparse high-k basis becomes constant,
irrespective of system size.40 In addition, we work in a
valence-conduction subspace of KS orbitals, nearest to the
Fermi level.
When combining these techniques, we extract readily, with

modest costs, the time-dependent properties of large systems.
In the following sections, we outline how the sparse-
fragmented exchange method is applied to linear-response
calculations in both the real-time and frequency domains. The
method is applied to naphthalene, fullerene, a chlorophyll a
(Chla) dye monomer, and a hexamer chlorophyll dye complex
found at the reaction center of Photosystem II (RC-PSII).41,42

The latter system is large (1320 valence electrons) and
therefore very expensive for traditional deterministic ap-
proaches.

2. THEORY
For a small external perturbation of an electric field in a given
direction, taken as x here for simplicity, we evaluate the
dipole−dipole correlation function through either a real-time
propagation (Section 2.1) or a frequency-domain linear-
response approach (Section 2.2).
The two approaches each have their own specific benefits.

The real-time approach is simple to derive and easily
extendable to strong and continuous electric field pulses. On
the other hand, an iterative frequency-domain method, as used
here, which iterates only a single exciton vector to find directly

( )| , is numerically faster and specifically optimized
for extracting the low-frequency linear-response absorption
spectra. Note that beyond a few hundred atoms, the iterative
methods, both frequency-domain and real-time, become more
efficient than frequency-domain methods that solve the
complete Casida matrix to obtain multiple low-lying excitons
of a molecular system.

Since we go beyond the Tamm−Dancoff approximation
(TDA) for the frequency-domain approach, the two methods
yield essentially identical results for the linear-response optical
spectra. For completeness, we overview the mixed determin-
istic/stochastic fragmentation of the Coulomb kernel in
Section 2.3, and for further details, we refer readers to ref 40.
2.1. Hybrid TDDFT in the Valence−Conduction

Subspace. The aim of the real-time approach is to efficiently
solve the TDKS (time-dependent Kohn−Sham) equation

i ht i i| = | (1)

In the GKS framework and predict the optical gap in the
absorption spectrum. The algorithm-specific density and
density matrix will be defined later in the section.
The starting point comes from a near-gap hybrid DFT

(ngH-DFT) ground-state calculation, where the GKS ground-
state molecular orbitals (MOs) are represented as a rotation
matrix of the LDA ground-state MOs40

t C t( ) ( )i
p

pi p| = |
(2)

where the basis set is the subset of eigenfunctions of the
ground-state LDA KS-DFT Hamiltonian

H s s s= (3)

The MOs, ϕp, are divided into four sets of states: Ncore core, Nv
= Nocc − Ncore valence (occupied), Nc conduction (virtual),
and the remaining high-lying conduction states. We work in
the combined valence and conduction subspace, Nv ⊕ Nc. The
effect of the high-lying conduction subspace is not considered,
and the effect of the core states is approximated as a
perturbative scissor correction, discussed in eq 15.
We emphasize that our labeling of “core” states, as in ref 40,

merely denotes lower-energy MOs that play a lesser role in the
description of optical excitations. The division between valence
and core states is done arbitrarily, so the number of valence
states is a numerical convergence parameter. All states here
share the same PW (or equivalently grid) representation,
although the approach is also applicable if the underlying local-
DFT MO ϕp were given in terms of a localized basis set.
Throughout this paper, the indices p, q,... run over the

combined M = Nv + Nc near-gap states, i, j,... refer to valence
orbitals, and a, b,... to conduction orbitals.
In this basis, the GKS Hamiltonian is represented as

H t h t( ) ( )pq p q= | | (4)

which is evaluated as

H t h v X X( )pq p q0 val core= | + + + | (5)

As mentioned, the range−separation parameter γ is non-
empirically obtained by enforcing the ionization potential
theorem; further details are provided in refs 17 and 40. The
time-independent part of the Hamiltonian, h0, is

h v v n t
1
2

( 0)0
2

eN
NL= + + [ = ]

(6)

which includes the KS potential

v n t v
n r t
r r

r v n t( )
( , )

d ( )eN
local

XC
SR,[ ] = +

| |
+ [ ]

(7)
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Here, v n t( )XC
SR, [ ] is the local short-range exchange correlation

potential. The next term in the Hamiltonian is the difference
between the short-range KS potential at time t and at t = 0

v n t v n t v n t( ) ( ) ( 0)[ ] = [ ] [ = ] (8)

The core contribution to the density is always approximated as
time-independent

n r t n r n r t( , ) ( ) ( , )core val= + (9)

The long-range exchange matrix elements are calculated at
each time-step

X P t u( )( )p q
st

st q s t pval| | = | |
(10)

where the long-range Coulomb kernel is uγ(|r − r′|) = erf(γ|r −
r′|)/|r − r′| and the density matrix is expressed Pst = ∑iCsi f iCti
( f i denotes orbital occupation). Assuming real orbitals, the 4-
index integral tensor is in chemists notation

u r r u r r r r r r( ) ( ) ( ) ( ) ( ) ( )d dq s t p q s t p| | = | |
(11)

To circumvent the prohibitive cost of calculating the exchange
matrix elements in eq 11, the long-range Coulomb kernel is
split into two parts, one treated deterministically and one that
we accurately represent through a sparse-stochastic basis.
Using a stochastic resolution of the identity for the Coulomb
kernel in the reciprocal space (see eq 39), the exact exchange
matrix elements are

X P t( )p q
st

st q s t pval| | = | |
(12)

where {|ξ⟩} is a small set of auxiliary vectors, as detailed in
Section 2.3. Equation 12 is efficiently computed as

X u t u t( ) ( )p q
i

p i q ival| | = *
(13)

where we only have to store the vectors (see Section 2.3)

u t C t( ) ( )p i
t

ti t p= |
(14)

Next, the effect of the core states on the exact exchange
operator, Xcore, is approximated as a time-independent scissor
correction

X P Qd dcore ,HOMO ,LUMO= + (15)

where P projects into the Nv subspace, Q projects into the Nc
subspace, and

ud ( )a
f

a f f a,
core

= | |
(16)

by inserting the GKS wave function, expanded in the LDA
MO basis, into the TDKS equation, and using the
orthogonality of the LDA MOs, an ordinary basis set TDKS
equation is obtained

i C t H t C t( ) ( ) ( )t = (17)

We excite the initial state with a small perturbation, with
strength parameter Δ ≈ 10−4

C t C t( 0 ) e ( 0)i D= = =+ (18)

where

D xpq p q= | | (19)

The time-dependent coefficients are propagated using the
midpoint rule for the time evolution operator

( )C t t C t( d ) e ( )i tH t td d
2+ +

(20)

where we use a l inear extrapolat ion approach,

( )H t H t H t t1.5 ( ) 0.5 ( d )td
2

+ = .
The dipole moment along x is extracted

t P t D( ) ( )
qp

qp pq=
(21)

The absorption spectra is then generated by Fourier analysis of
the time-dependent dipole moment as usual15

S( )
1
3

Tr ( )= [ ]
(22)

where

c
( )

4
Im ( )ii ii= [ ]

(23)

And the polarizability is calculated from ( )ii
( )i= .

2.2. σ(ω) via an Iterative Chebyshev Procedure. The
frequencies of the TDSE solve an eigenvalue equation, known
as the Casida equation.1 For reference, see a traditional
derivation including Fock exchange in ref 43. The Casida
equation is formally

i

k
jjjjjj

y

{
zzzzzz

i
k
jjj y

{
zzz

i

k
jjjjjj

y

{
zzzzzz

f

f

f

f
1 0
0 1

=
+ +

(24)

where the Liouvillian is

i
k
jjj y

{
zzzA B

B A
=

(25)

And f+ and f− refer to the orbitals of the linear-response
perturbation. In the space of single-particle singlet excitations,
the orbital Hessians A and B are

A ia jb ia jb ia f jb
u

B ia bj ia bj ia f bj u

( ; ) ( ) 2( ) ( )
( )

( ; ) 2( ) ( ) ( )

a i ij ab

a b i j

a j i b

XC

XC

= + | + | |
| |

= | + | | | | (26)

With two-electron integrals

ia jb r r r r r r r r( ) ( ) ( ) ( ) ( )d di a j b
1| = | | (27)

So (ia|jb) = (ia|bj). Similarly to the real-time approach
presented in Section 2.1, the XC kernel elements are computed
within an attenuated ALDA scheme to first order.44

To track the response of the system to an electric field in the
x-direction, one uses an initial excitation spinor composed of
two dipole matrix elements

i

k
jjjjjjj

y

{
zzzzzzz

i

k
jjjjjjj

y

{
zzzzzzz

x

x
ia

ia

a i

a i

| = =
+ | |

| |

+

(28)
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Application of the Liouvillian matrix on a general vector
f f( , )T+ is then

f f v v

y z

( ) ( )ia a i ia a H i a i

a i a i

XC= + | | + | |

| |

+ +

+
(29)

And for backward transitions

f f v v

y z

( ) ( )ia a i ia a H i a XC i

a i a i

= | | | |

+ | + | +
(30)

where we defined

y r f r u r( ) ( ) ( )i
jb

jb ij=± ±

(31)

z r f r u r( ) ( ) ( )i
jb

jb ib=± ±

(32)

And the action of uγ on orbital pairs is written shorthand uijγ(r)
≡ ∫ uγ(|r − r′|)ϕi(r′)ϕj(r′) dr′. The Hartree potential is

v rdH
n r

r r
( )= | | , and the induced density is

n r f f r r( ) 2 ( ) ( ) ( )
jb

jb jb j b= ++

(33)

The first-order change in the short-range exchange−correlation
potential is analogous to the real-time approach45

v v n n v n
1

( )XC XC 0 XC 0= [ + ] [ ]
(34)

The iterative Chebyshev approach to obtain the full, non-
TDA, frequency-resolved dipole−dipole correlation function
σ(ω) is obtained as46

( ) ( )| | (35)

And the delta function is calculated as

c T( ) ( ) ( )
n

N

n n
0

Chebyshev

=
= (36)

where T ( )n is the n’th Chebyshev polynomial and is a
scaled Liouvillian with eigenvalues between −1 and 1. The
optical absorption is obtained from the residues as

c R( ) ( )
n

N

n n
0

Chebyshev

=
= (37)

with R T ( )n n= | | and ia ia= ±± ±. For the Chebyshev
coefficients, cn(ω), we use simple smoothly decaying
weights.46,47

Compared with the TDA, our inclusion here of the off-
diagonal matrix B and the negative-frequency component f−
(and therefore the addition of “detransitions” of negative
frequency) doubles the spectral range of , leading to the
doubling in the number of required Chebyshev terms, which is
typically 1000 now.
2.3. Deterministic/Fragmented-Stochastic Calcula-

tion of Long-Range Exchange. The dominant cost of the
spectra calculation is computing the action of uγ(|r − r′|) on
orbital pairs, i.e., the exchange part in TDHF (time-dependent
Hartree−Fock). To reduce the cost, we use a mixed

deterministic/fragmented-stochastic approach, as developed
in ref 40, which is briefly overviewed below.
As uγ(r, r′) = uγ(|r − r′|), we exploit the convolution form of

the integrals uijγ(r) and uibγ (r)

u r u k k( ) ( )ij i j
1= { | } (38)

where 1 denotes an inverse FFT. To reduce the effort in eq
38, the interaction uγ(k) is split between long-wavelength, low-
k components that are included deterministically, while the
remainder high-k terms are represented through a small sparse-
stochastic basis with a constant number of terms (around
1000−2000) independent of system size. To achieve this
fragmentation of uγ(k), the following identity is introduced

I k k k k
k k

low low high high

low high

= | |+ | |
(39)

In this basis, the Coulomb interaction is

u k u k k u k k

k u k

( ) ( )

( )

k k
low low low high high

high high

low high

= | |+ |

| (40)

Note that for simplicity, we present for the case where all uγ(k)
are positive. (In practice, some elements are negative due to
the use of the Martyna−Tuckerman procedure48 to avoid grid-
reflection effect, so our actual simulations use the general
formulation, as detailed in ref 40.)
We introduce now a sparse-stochastic basis {|α⟩} (with Nα

members) for the khigh space

k
N

S
A k( ) ( )

k
high high

high= ±
(41)

where Nk dhigh
is the number of high-k terms, S is the length of

each fragment, while Aα randomly projects onto a fragment of
the khigh-space, i.e., it is one within the length-S fragment α, and
vanishes outside. In principle, for the real-time segment of the
paper, we could resample the random projection in the
stochastic basis at each time-step to further reduce the
stochastic error. However, the high-k contribution is
sufficiently small such that the computational cost of
resampling the stochastic basis at each time-step is not worth
the reduction in error it would give.
The high-k contribution of uγ uses then Nα states |ζ⟩, with

components

k u k k( ) ( )high high high| = (42)

A full auxiliary basis with Nξ = Nk dlow
+ Nα components is then

defined as

u k k( )low low| ={ | } {| } (43)

And the interaction is finally a sum of separable terms

u = | |
(44)

Note that the only point in our approach where there is a
stochastic error is in forming the exchange-potential operator,
eq 44; once a deterministic/stochastic basis is used to form an
approximate but fully Hermitian representation of the
exchange-potential operator, the propagation (in real-time)
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or iteration (in the frequency-dependent approach) is done
deterministically and will therefore be fully stable.
Our ground-state method paper, ref 40, discusses the

stochastic error in more detail, and we have not detailed it
here as the exchange contribution at each time-step (or
Liouvillian application in the iterative Chebyshev approach) is
very small, so the error is even smaller in the TDGKS than the
GKS-DFT methods. We have verified that the optical spectra
obtained in the manuscript are for the most part insensitive to
the size of the sparse-stochastic basis Nα sampling the high-k
contribution of the exchange (e.g., Nα ∼ 500−5000 yield
identical spectra). The stochastic error is much smaller than
that due to using a smaller M (i.e., decreasing the Nv:Nc basis
size).

3. RESULTS
We first benchmark the resulting TDGKS method on
naphthalene and fullerene and then study a Chla monomer
and a chlorophyll hexamer reaction-center complex found at
the center of Photosystem II (RC-PSII). The Chla model has a
methyl acetate ligand in place of the phytyl chain. The
optimized coordinates for both dye systems are taken from ref
42. For Chla, we focus on the visible wavelength region Q
absorption bands that are mostly represented by the HOMO
to LUMO transition. These excitations are characteristic of the
magnesium-center metalloporphyrin ring and depend on the
laser polarization direction.49

The linear-response calculation requires input from a prior
ngH-DFT calculation. Table 1 provides the maximum
parameters for the ground-state calculations of the four
systems. The active space, represented by Nv:Nc, denotes the
number of near Fermi level valence and conduction bands that
are explicitly included in both the hybrid DFT calculation and
subsequent TD calculation.
For all systems, the plotted spectra are obtained from the

frequency-resolved Chebyshev approach. We verified that the
real-time and frequency-based approaches give identical
spectra for naphthalene, fullerene, and Chla. The resolution
is fixed by setting the spectral width to the number of
Chebyshev terms, N/ Chebyshev , constant, with an energy
broadening of roughly 0.2 eV. The real-time calculations were
propagated with a time-step of dt = 0.25 au for a total number
of time-steps nt = 5000.
In Table 2, the optical gaps of naphthalene and fullerene are

compared with those calculated with the NWChem software
package.50 All optical gaps correspond to the first peak in the
absorption spectrum. The NWChem optical gaps are obtained
by selecting the lowest root excitation energy with nonzero
dipole oscillator strength. The LR-TDDFT NWChem
calculations use an aug-cc-pvdz Gaussian basis set and the
BNL exchange−correlation functional (with the same range-
separation parameter γ). Good overall agreement is obtained

between our new method and the established software for
these two hydrocarbon systems.
Figures 1 and 2 show convergence of the optical gaps of

naphthalene and Chla with respect to the explicit number of

near-gap states included in the spectral calculation. For
naphthalene, fullerene, and RC-PSII, we present the averaged
spectrum, while the Chla peaks are specifically chosen from the
x- and y-polarized spectra.
The convergence of the naphthalene optical gap, Figure 1,

depends more heavily on the inclusion of the virtual orbitals as
opposed to the occupied orbitals. However, for Chla, Figure 2,
convergence of the Qy and Qx peaks requires that all occupied
states and a large number of virtual states are included. For
these two systems, the optical gap peaks are both converged
with the maximum number of conduction states, provided in
Table 1, and a larger conduction basis did not influence the
optical gap peak position. Table 3 provides the Qy and Qx peak

Table 1. HOMO − LUMO Gaps for Naphthalene, Fullerene, Chla, and a 476 Atom Photosystem II Hexamer Dye Reaction
Center (RC-PSII)a

system Nx Ny Nz No Nv
max Nc

max optimal γ (Bohr−1) LDA-DFT ngH-DFT

naphthalene 48 44 24 24 24 488 0.285 3.34 8.63
fullerene 60 60 60 120 120 480 0.189 1.63 5.42
Chla 84 76 64 116 116 396 0.160 1.40 4.37
RC-PSII 120 148 128 660 200 400 0.120 1.23 3.82

aAlso shown are the number of grid-points and occupied states, the maximum number of valence and conduction states, and the range-separation
parameter. All energies are in eV.

Table 2. Optical Gaps (First Peak in Spectrum) of
Naphthalene, Fullerene, Chla, and RC-PSII Using Nv

max:Nc
max

Statesa

system optical gap reference

naphthalene 4.68 4.52 (NWChem)
fullerene 3.33 3.30 (NWChem)
Chla 2.01, 2.20 1.99, 2.30 (Expt.)
RC-PSII 2.20 1.95 (Expt.)

aQy and Qx peaks are given for Chla. Comparisons to available
literature values are included for dye systems. All energies are in eV.
Reference values for naphthalene and fullerene are from LR-TDDFT
calculations with NWChem software ref 50. Chla and RC-PSII are
experimental values from refs 41 and 42.

Figure 1. Convergence of the optical gap of naphthalene with respect
to conduction basis Nc. The labels correspond to Nv:Nc. The
frequency-domain approach spectra is used here and throughout the
other figures, but we confirmed that the real-time spectra are identical.
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positions as well as absolute differences for Chla with Nv:Nc
basis size. The distance between the peaks, Q Qy x

, is well

converged, within 0.03 eV, already for Nv = 20:Nc = 40.
Figure 3 shows that the optical gap of fullerene (C60) is

converged within an error of 0.03 eV for Nv = 60:Nc = 120 to
Nv = 120:Nc = 480. It is known that the optical gap of fullerene
is faint,51 so to resolve the peak, we use a total of 4000
Chebyshev polynomials.
While the convergence tests above were for the desired

quantity, the low-frequency spectrum, an interesting question
is how the real-time dipole itself (not just the frequency-
resolved spectra) converges with the basis set. Figure 3 shows
this convergence for fullerene, comparing Nv = 80:Nc = 160
and Nv = 120:Nc = 480. The signal for the smaller subspace
accurately captures low-frequency oscillations even though the
signals do not exactly match.
Moving to the largest system, Figure 4 shows the absorption

spectrum of the large dye, RC-PSII, as well as the convergence

of the optical gap. Unlike the smaller systems studied here, the
optical gap of this much larger system converges rapidly with
the fraction of valence-conduction states, with Nv = 150:Nc =
300 and Nv = 200:Nc = 400 giving nearly identical spectra.
With regards to stochastic error, we emphasize that

stochastic vectors are only introduced for computing part of
the exchange interaction, and all other calculations involved are
done deterministically. The use of a sparse-stochastic basis for
the high-k component of the exchange interaction, in both the
preparation of the ground-state GKS orbitals and the linear-
response spectra calculation, introduces only a very small
stochastic error. For the four systems, we used kcut = 1.8, 1.1,
0.9, 0.5 au respectively, and with the γ values provided in Table
1, the exchange kernel, vγ(k) ∝ exp(−k2/4γ2)/k2, is numeri-
cally tiny for the high-k stochastically sampled space.
The chosen kcut values correspond to Nk dlow

≃ 5000 low-k
elements. Each system also uses Nα = 1, 000 sparse vectors for
the high-k space. An overall auxiliary basis of Nξ ≃ 6, 000 is
then used, irrespective of system size. The stochastic error in
our TDDFT calculations is then negligible, much less than
0.01 eV. A more detailed breakdown of the stochastic error is
given in ref 40.

4. DISCUSSION
We presented here a GKS-TDDFT formalism for optical
spectra that efficiently calculates long-range exact exchange by
a mixed deterministic/fragmented stochastic reciprocal-space

Figure 2. Convergence of the Qy- and Qx-optical absorption bands of
Chla with active space size Nv:Nc.

Table 3. Convergence of the Gap between the Qy and Qx
Bands of Chla with Nv:Nc

a

Nv:Nc Qy Qx
Q Qy x

20:40 2.23 2.45 0.22
40:80 2.17 2.34 0.17
60:120 2.12 2.31 0.19
116:198 2.09 2.26 0.17
58:396 2.06 2.26 0.20
116:396 2.01 2.20 0.19

aAll energies are in eV.

Figure 3. (Left) Convergence of optical gap of fullerene with respect to Nv:Nc. (Right) Time-dependent dipole signal comparison for fullerene
using Nv = 60:Nc = 120 and Nv = 120:Nc = 480.

Figure 4. Absorption spectra of RC-PSII with respect to active space
size Nv:Nc. The inset shows the convergence of optical gap with
Nv:Nc.
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grid approach. Both a real-time and a frequency domain
formulation were studied. These approaches converge the
optical gap readily with the number of valence MOs, especially
as the system gets larger. Thus, for the largest system, RC-PSII,
it is enough to use Nv = 150 rather than the total number of
occupied states No = 660. Additionally, the dimension of the
conduction basis for the converged hexamer calculation is even
smaller than the number of occupied orbitals. The number of
required near-gap basis functions decreases relative to the
number of occupied electrons as the system size grows due to
the response becoming increasingly concentrated near the
Fermi energy.
The cost of calculating the exchange matrix elements is

reduced in the present approach to ∼M2NvNξ, whereM = Nv +
Nc.

40 For the optical gap calculations, we use a constant
number of Nξ, and Nv and M do not increase linearly with the
number of total MOs in the system. The spectral calculations
are even less sensitive to the stochastic basis size Nα than are
the ground-state GKS calculations. The combination of all of
our techniques thus culminates in a method that is particularly
well suited to extract the optical properties for systems with a
large number of electrons.
To converge the optical gap in the naphthalene and Chla

simulations, more conduction states are needed, compared to
valence states. When Nv < No, the core correction to the
exchange accounts for much of the effect of the excluded
occupied states by shifting the peak positions with a rigid
scissor shift. There is no such equivalent formalism to address
the effect of the missing high-lying conduction states. In the
future, we will attempt to improve the convergence with
respect to the conduction states by working in a pair natural
orbital basis to maximize the transition dipole for a cheaper
ALDA-TDDFT calculation.52

The convergence with respect to the selected active space
should be significantly improved when extending this approach
to the GW-BSE method because the screened Coulomb
interaction is much weaker than the exchange interaction in
the current TDGKS formalism. Specifically, the inclusion of
exact exchange in TDGKS yields a better description of
charge-transfer excitations than in TDDFT with local or
semilocal functionals; however, one needs explicit inclusion of
the electron−hole attractive interaction for an even more
accurate absorption spectrum. Our recent formulation of the
stochastic GW-BSE recasts the expensive screened exchange
term to a translationally invariant fitted exchange interaction
and a small difference that is sampled stochastically.46 This
shifts the bulk of the computational effort to calculating the
convolutions, as in TDHF, for which we substantially
improved the efficiency here.
In addition to the extension of this LR-TDDFT approach to

the BSE, there will be several other developments/extensions
of the presented method.
Fragmented stochastic exchange could be formulated within

an orthogonal-projector augmented waves (OPAW) frame-
work. This would extend our recent LDA-OPAW-TDDFT to
hybrid functionals with long-range exact exchange.53 OPAW
enables the use of coarser grids and a lower kinetic-energy
cutoff compared to norm-conserving pseudopotentials, which
will unlock even larger system-size calculations.
Another pursuit for fragmented-stochastic GKS-TDDFT will

be excited-state nuclear gradients. Previous works computing
ionic forces in TDDFT were mostly limited to LDA
functionals, and the presented method significantly reduces

the cost of exchange, making long-RSH functionals more
accessible.54 Note also a recent work with local hybrids.55

Going beyond the linear-response regime, the real-time
approach would be particularly suited for calculating the
hyperpolarizability of molecules as well as simulating strong-
field phenomena, such as strong-field ionization and high
harmonic generation. Even though most practical calculations
are done on small systems, large grids are required to resolve
the electron density when it is far from equilibrium. We expect
to see then a different pattern of behavior in converging both
the Nv ⊕ Nc subspace as well as the parameters in splitting the
long-range Coulomb interaction.
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