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Stochastic methodology shows molecular interactions protect two-dimensional polaritons
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We introduce stochastic techniques that enable the simulations of polaritons resulting from placing giant
two-dimensional molecular aggregate crystals with 108 interacting excitonic dyes in realistic multimode cavities.
We show that the intermolecular coupling protects the formation of polariton states in the face of strong molecular
disorder due to persistent delocalization of the dark molecular states. This demonstrates the nontrivial role of
internal aggregate Hamiltonian in polariton properties, and the new computational method opens horizons for
stochastic simulations of related systems.

DOI: 10.1103/PhysRevB.109.L241303

Experiments have shown that photophysical and even
chemical properties can be modulated by optical cavities,
leading to promising potential applications across chemical
and materials science domains [1–6]. Thus far, many differ-
ent types of substrates have been demonstrated with strong
electronic coupling to cavities, including semiconductor crys-
tals, molecular aggregates, and organic polymers. Despite this
breadth, treatments of experimental data typically rely on
the simple Tavis-Cummings Hamiltonian [7], which neglects
direct intermolecular interactions between emitters. Any com-
plete description of light-matter interactions should account
for the often complex DOS availed by extended matter.

Furthermore, even when multiple molecules are consid-
ered, most theoretical studies of molecular polaritons only
represent the electromagnetic field with a single boson mode.
For system sizes up to a few dozen molecules, high level
theoretical methods accurately reproduce simple optical ob-
servables [8–10]. However, with the inclusion of long-range
coupling, giant systems are needed to predict accurate delo-
calization and transport properties.

Intermolecular interactions and multiple photonic modes
are especially important for molecular aggregates and re-
lated biological light harvesting systems, all of which have
strongly internal-structure-dependent collective superradiant
properties. This is especially true in J aggregates, one of the
first studied systems that can form molecular optical polari-
tons [11,12]. The energy transfer properties in J aggregates
relate to internal geometry and the corresponding elec-
tronic band structure [13]. Interestingly, tight-binding models
suggest strong light-matter coupling can be employed to
manipulate spectral and transport properties of dark exciton
states (i.e., states with low photonic content) [14–20].

The importance of using a full multimode cavity is high-
lighted in recent works [16,20–25]. For example, it was shown
in red detuned devices the anticrossing between optical and
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exciton modes is shifted to higher wave vectors, protecting
a greater fraction of lower polariton states from localization
induced by static molecular disorder [16,22,26,27]. Thus,
a many-mode cavity representation is essential for a rigor-
ous investigation of disorder-resistant transport in polaritonic
materials.

Here we apply an extremely efficient linearly scaling
stochastic approach to study polaritons in large μm-sized mul-
timode cavities containing two-dimensional (2D) molecular
aggregates/crystals with tens of 106 of molecules. Stochastic
trace techniques [28] are used to visualize the density of
states (DOS), participation ratio, and angle-dependent trans-
mission. Our main finding is that the aggregate structure
drastically affects the disorder-dependent properties of the
resulting cavity-induced polaritons and weakly coupled states,
including line shapes and delocalization measures. These
results reinforce that inaccurate characterization of the inter-
molecular interactions will yield poor results in describing
photophysical and transport properties of molecular aggre-
gates in the strong coupling regime.

To show the importance of the intermolecular cou-
pling and its effects on the observables of the traditional
Tavis-Cummings Hamiltonian, we employ the J-aggregate
transition dipolar coupling as a minimal model that both
shows this effect and has direct experimental parallels. The
bandlike delocalized density of states in J aggregates leads
to fundamentally different light-matter density of states in the
strong coupling regime as shown in the cartoon of Fig. 1(a).
In the Supplemental Material (SM), we analyze another case,
I aggregation [29,30], where there are dark molecular exciton
states lower in energy than the collective aggregate peak at
k = 0, leading again to distinct exciton delocalization prop-
erties relative to J aggregates. The methods presented here
are also applicable to any material where the intermolec-
ular interactions are translationally invariant, such as most
semiempirical semiconductor Hamiltonians.

Our starting point is a dielectric cavity of thickness LC ,
encompassed by two ideal mirrors. We only consider the
lowest band of photon modes with qz = π/Lc, and the
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FIG. 1. (a) Cartoon diagrams displaying the increase in Hamil-
tonian complexity in the DOS in this work. Black is used for the
molecular DOS, red for photon DOS, and blue to label the q = 0
polariton states. (b) System geometry diagram shows the Coulomb
coupling function, J , displayed as the coupling to the center green
dipole. (c) and (e) DOS diagrams for a J aggregate and a crystal
without Coulombic intermolecular coupling. A macroscopic number
of molecules is used, Nx = 84375, Ny = 25, with a total of 65–75
photons mode along the long crystal axis below a cutoff of 5.5 eV.
The Rabi splitting is around ∼0.07 eV, the energetic disorder (Gaus-
sian) standard deviation is of 0.1 eV and the Chebyshev resolution is
of 0.01 eV. (d) 3D plot of the angle resolved absorption spectrum of
a molecular aggregate measuring 11 x 13 μm, including 196 photon
wave vectors; modes with energy less than E0 − J (q = 0) are colored
in red while those above are in blue.

s and p polarizations have the same dispersion, ω(q‖) =
h̄c√
εc

√
q2

‖ + π2

L2
C

, where the zero-wave-vector energy, ω0 =
ω(q‖ = 0) = h̄c

LC
√

ε0
, is almost matched to E0, the transition

energy of the molecular (dye) exciton, with a detuning � ≡
ω0 − E0. The empty cavity Hamiltonian is (h̄ = 1)

HC =
∑

q

∑
λ=s,p

ω(q)a†
λ(q)aλ(q). (1)

A dielectric slab, either an ordered molecular aggregate or
a crystal, with small thickness relative to LC (Fig. 1), is then
placed inside the cavity, along its center plane to enhance the
light-matter coupling [31,32]. The dyes are placed on a 2D
lattice, with crystal vectors defined as a1 = (0, l ), a2 = (w, s),
and the lengths of the molecular aggregate are Lx = wNx,
Ly = lNy; the cavity volume is VC = LxLyLC . On each 2D site
j a dye is placed, with a transition dipole μ j and an excitation
energy Ej , shown in Fig. 1(b). The dipoles are presumed
planar, all pointing in the same direction, here taken to be

the y axis, so μ j = μ0 ≡ ŷ. We assume that the photons and
molecule systems share the same Brillouin zone, and share
periodic boundary conditions in the plane of the molecule.

We assume energetic site disorder, Ej = E0 + δ j , where
δ j is an uncorrelated Gaussian noise with variance σ 2. Only
energetic disorder is considered, rather than positional or
orientational, as previous works show that energetic dis-
order is dominant in molecular aggregates and polaritons
[16,20,26,33]. The fixed-direction dyes interact via a tran-
sitionally invariant dipole-dipole interaction, labeled Ji− j ,
which to fit experiment is based on finite closely spaced point-
charge interactions [29,30,34].

The molecular Hamiltonian is then

HM =
∑

j

E jb
†
jb j +

∑
i j

Ji jb
†
i b j . (2)

With the rotating wave approximation and the Coulomb
gauge, the molecule-photon interaction is [26]

HMC =
∑

j,q

∑
λ=s,p

[g jλ(q)a†
λ(q)b j + g∗

jλ(q)b†
jaλ(q)], (3)

with a coupling strength

g jλ(q) = i	R
Ej

E0

√
ω0

Nω(q)
pλeir j ·q, (4)

where the projections along and perpendicular to the field
mode are ps = (μ̂ j · n̂q), and pp = (μ̂ j · q̂), and n̂q = [q̂ × ẑ].
The projections are j independent as here all dipoles are

parallel. The Rabi splitting strength is 	R = μ0

√
πE2

0 N
ε0ω0VC

[26].
The full Hamiltonian is then the sum of the cavity, molec-

ular, and coupling terms, H = HC + HM + HMC. Without
molecular disorder (Ej = E0) and dye-dye interaction (Ji j =
0), one obtains the analytically solvable multimode Tavis-
Cummings Hamiltonian [21]. Similarly, in the absence of
disorder, we can also exactly resolve the effects of the ag-
gregate internal structure due to the translational invariance
of the Coulomb interaction, which implies the in-plane wave
vector q is a good quantum number for both molecular and
cavity subspaces. In the latter exactly solvable scenario, using
a Fourier-transformed exciton basis, b†(q) = ∑

j b†
je

iq·r j /
√

N ,
the Hamiltonian separates into a sum over mode-specific
terms,

HTOT =
∑

q

[
E ′(q)b†(q)b(q) +

∑
λ

[ω(q)a†
λ(q)aλ(q)

+ gλ(q)a†
λ(q)b(q) + g∗

λ(q)aλ(q)b†(q)]

]
, (5)

where the modified exciton energies are E ′(q) = E + J (q),
with J (q) = ∑

j J ( j)eiq·r j , E (q) = E0 is the (constant) ex-
citon energy, while the delocalized exciton-photon coupling

term is gλ(q) = 2i	R pλ

√
ω0

ω(q) . The mode specific exciton-

photon Hamiltonian is trivially diagonalized, yielding polari-
ton states ξ (q) = β(q)b(q) + ∑

λ αλ(q)aλ(q), and a simple
modification to the usual expressions for the upper and lower
polariton (UP/LP) energies

EUP/LP(q) = ω(q) + E ′(q)

2
±

√
	2

R + [ω(q) − E ′(q)]2

4
. (6)
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The obtained spectra is exactly the same as that given
by the multimode Tavis-Cummings, except that here the
momentum-specific interaction replaces the usual noninter-
acting E (q) molecular energies. For strong interactions as in
molecular crystals, with J (q) that may reach up to 0.3 eV or
more, the Hamiltonian spectrum is substantially modified due
to the intermolecular couplings. Note also that, as usual, for
each polariton the wave function amplitudes satisfy:

|αλ(q)|2 = p2
λ

[E − E ′(q)]2

[E − E ′(q)]2 + 	2
R

, (7)

where E ≡ EUP/LP, while the photon amplitude β(q) is
determined from the polariton normalization, |β(q)2| +∑

λ |αλ(q)2| = 1.
We now turn to the nontrivial case of both strong molecular

energetic disorder and intermolecular coupling, J ∼ σ ∼ 	R.
To model this realistically, we must return to the complete
light-matter Hamiltonian. The key to efficient very large-scale
calculations is the use of stochastic methods, which require
that the action of the Hamiltonian on a given vector be ef-
ficient. As the bilinear Hamiltonian conserves the number
of polaritons, a single-polariton wave function ψ will be a
direct sum of a molecular and cavity (photonic) parts, ψ =
ψM ⊕ ψC , so computationally it is a vector of length N + 2C,
where N and C are the numbers of dye molecules and included
cavity modes (the factor of 2 is due to the s and p photon
polarizations). Since the vast majority of photon wave vectors
are not in resonance with the excitonic system, an energy
cutoff is imposed so C 	 N . The photon index is denoted by
� = (�x, �y), associated with a photon mode q(�).

When applying the Hamiltonian on such a function, H |ψ〉,
the HM action involves an efficient convolution of the dye-dye
interaction,

∑
j�N J� jψ

M
j [28]. For the cavity-molecule part

HMC, one can use a similar transform, but it is even faster
to apply consecutively fractional 1D Fourier transforms. De-
fine Fx(�x, jx ) = e2π i jx �x/Nx , for elements jx = 1 · · · Nx, �x =
1 · · ·Cx with Fy analogous. Then, for example,

〈�λ|HMC|ψM〉 = 2i	R pλ

√
ω0

ω[q(�)]N
Fy

[
Fx

(
Ej

E0
ψM ( j)

)]
.

(8)

The scaling of this step is O(N
√

C), and since practical cav-
ities involve at most a few thousand relevant-energy photons,
the action of HMC is very efficient.

Given the efficient representation of the action of the
Hamiltonian, we use a stochastic resolution of the density
of states operator, a common technique in condensed matter
systems [28,35,36]

ρ(E ) = Tr[δ(H − E )] = {〈ζ |δ(H − E )|ζ 〉}ζ , (9)

where ζ is here a vector of length N + 2C with random eiθ

elements at each site, and the curly brackets indicate a statis-
tical average over the random ζ elements, and simultaneously
over the site disorder. The error in the stochastic trace scales
as O(1/

√
NNζ ) [36], and is thus negligible, for sufficiently

large crystals, even for very few (here Nζ ≈ 10–200) random
samples. For the action of the DOS operator on a vector,
δ(H − E )|ζ 〉, the efficient Chebyshev approach is used [37],

with a number of Hamiltonian-vector operations, determined
by the desired energetic resolution relative to the spectral
width, that is typically less than 2000 [28].

The overall scaling of the method is then limited by the
operations needed to incorporate the intermolecular interac-
tions. In our case the application of the dipolar coupling via
convolution is effectively linear in time. In Fig. 1(d) we show
a large calculation possible with this algorithm, requiring only
modest computational time that can be parallelized on a stan-
dard 128-core AMD Milan cluster. Given the size of the total
basis of 107 elements, memory costs associated with wave
function storage quickly become the limiting computational
factor for this method.

To examine the local properties of the molecular and pho-
tonic subsystems, we similarly stochastically compute the
projected matter and light local DOS, ρM (E ) ≡ Tr[PMδ(H −
E )] and ρC (E ) ≡ Tr[PCδ(H − E )], respectively, introduc-
ing the projection operators onto the molecular and cavity
(photon) spaces, PM and PC , respectively. As there are so
many more molecules than photon mode involved in strong
light-matter coupling, their local density of states are shown
separately in Fig. 1.

The angle resolved photonic density of states (directly
proportional to the measurable microcavity angle resolved
transmission spectrum), is similarly defined as A(E , q) ≡∑

λ〈q, λ|δ(H − E )|q, λ〉, where |q, λ〉 ≡ a†
λ(q)|0〉. To effi-

ciently sample it, we introduce a stochastic resolution of the
identity, 1 = {|ζ 〉〈ζ |}ζ , which when plugged in yields

A(E , q) =
∑

λ

{〈qλ|δ(H − E )|ζ 〉〈ζ |qλ〉}ζ , (10)

so it is evaluated in the same stochastic process as the total
DOS [Eq. (9)], as both use the δ(H − E )|ζ 〉 vector.

Without static disorder, the angle resolved
transmission is simply proportional to A0(E , q) =∑

η=LP, UP

∑
λ |αλ(q)|2δ[E − Eη(q)]. Static disorder broadens

A(E , q). Its linewidth in q space at fixed E reveals information
about the delocalized character of polariton modes at this
energy, and whether q is a good quantum number in the
presence of disorder [16,21,26,38].

Complementary information is given by the molecular
angle resolved DOS obtained from the vectors |β(q)〉 ≡

1√
N

∑
j eiq·r j b†

j |0〉. This quantity provides information on the
matter component of optically bright upper/lower polariton
states at a given wave vector:

ρβ (E , q) ≡ 〈β(q)|δ(H − E )|β(q)〉, (11)

which is evaluated stochastically analogously to Eq. (10).
While in the presence of disorder q is no longer a good
quantum number, we clearly visualize (Fig. 3) the tradeoff
between molecular and photon contributions, and the energy
broadening of the bright states in each subspace.

Figure 1 shows the photonic density of states, for a J
aggregate, and an identical lattice with no Coulombic inter-
molecular terms in the strong disorder regime σ ∼ J ∼ 	R.
As the number of photon modes is tiny compared to the
number of molecular dipoles, there is essentially no change
in the total DOS when the cavity is turned on. However, the
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FIG. 2. (a) Angle resolved absorption spectrum of a J aggregate, and an equivalent (with the same number of monomers) material with
no intermolecular interactions in the weak disorder regime σ/	R 	 1 and (b) strong disorder regime σ/	R � 1. The photonic content of the
LP in (c) was obtained by piecewise integration of the angle resolved photon (transmission spectra) and molecular density of states. Here, the
same quasi-1D ribbon was used as in Fig. 1, but Nζ = 120 stochastic samples were sufficient to resolve the presented spectra.

q ≈ 0 UP/LP states can be identified in the photon DOS when
the J aggregate is placed inside the microcavity.

For all observables that include some form of inter-
nal aggregate structure there is exchange narrowing, i.e.,
interaction-induced narrowing of peaks and increase in the
participation ratios [32]. Figure 2 shows that, in J aggregates,
microcavity coupling induces substantially greater splitting
between the LP/UP bands in the face of strong disorder,
substantial exchange narrowing, and largely asymmetric line
shapes skewing higher in energy. The additional narrowing
(i.e., resistance to disorder), relates to the fact that the J
aggregate molecular DOS [Fig. 1(e)] extends higher in energy
than an uncoupled system DOS, thus allowing higher-energy
photons to remain in resonance with the molecular system.
The significant differences in line shape observed between the
analyzed aggregates are entirely due to the delocalization of
their respective dark exciton states as demonstrated in Fig. 3.

Figure 3 shows the angle resolved molecular density of
states and relative wave packet uncertainty for a J aggre-
gate and noninteracting (uncoupled) emitters. We observe
much greater wave character in the (weakly coupled) J
aggregate dark exciton modes at higher q, despite the in-
fluence of strong disorder. The enhanced wave character of
the high-q weakly coupled modes is a byproduct of the
strong intermolecular interactions in J aggregates, which also
lead to the reduced photonic content in the J aggregate LP
band shown in Fig. 2(c), bottom. Additionally, as reported
in the SM, the average participation ratio of J-aggregate
molecular states is of order 104, while an uncoupled polari-
ton Hamiltonian leads to a maximum participation of 300.
Lastly, the well-studied phenomena of exchange narrowing
in molecular aggregates [29,32,39,40], is also clearly visible
in the q ∼ 0 polariton transmission spectrum at the top of
Fig. 2(c).
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Overall, our results show that the long-range intermolec-
ular interactions of organic aggregates lead to substantial
effects in their (multimode) cavity-polariton spectra and
dark state delocalization measures. This demonstrates the
need to include accurate internal models for the electronic
coupling in polaritonic systems made from crystals, poly-
mers, or aggregates. For example, the large Rabi splitting
(0.06 eV) obtained in the present 2D studies was the result
of realistic 5–10 D dipole and realistic molecular geome-
tries. To attempt to produce such a Rabi splitting in a 1D
lattice would require unrealistic dipoles on length scales
where transition dipole coupling effects are no longer mean-
ingful, leading to especially inadequate description of the
dark modes. We expect this substantial delocalization of the
molecular states to have important effects on photophysi-
cal properties and transport phenomena in these systems,

leaving the door open for further studies that consider this
effect.

The stochastically evaluated observables are obtained here
through an efficient molecular-coupling scheme that will ap-
ply to other, more sophisticated model Hamiltonians, enabling
future work to consider even more realistic system geometries
and internal structure when studying energy and charge trans-
fer in many-molecules polariton systems.

N.C.B. acknowledges the National Science Foundation
Graduate Research Fellowship Program under Grant No.
DGE-2034835. R.F.R. acknowledges generous start up funds
from Emory University. J.R.C. was supported by National
Science Foundation Grant No. CHE-2204263. D.N. was
supported by National Science Foundation Grant No. CHE-
2245253.

[1] D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G.
Lagoudakis, P. G. Savvidis, and D. G. Lidzey, Polariton-
mediated energy transfer between organic dyes in a strongly
coupled optical microcavity, Nat. Mater. 13, 712 (2014).

[2] M. Reitz, F. Mineo, and C. Genes, Energy transfer and cor-
relations in cavity-embedded donor-acceptor configurations,
Sci. Rep. 8, 9050 (2018).

[3] C. A. DelPo, S.-U.-Z. Khan, K. H. Park, B. Kudisch, B. P. Rand,
and G. D. Scholes, Polariton decay in donor–acceptor cavity
systems, J. Phys. Chem. Lett. 12, 9774 (2021).

[4] X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J. A.
Hutchison, E. Devaux, C. Genet, and T. W. Ebbesen, Non-
radiative energy transfer mediated by hybrid light-matter states,
Angew. Chem. Int. Ed. 55, 6202 (2016).

[5] X. Zhong, T. Chervy, L. Zhang, A. Thomas, J. George, C.
Genet, J. A. Hutchison, and T. W. Ebbesen, Energy transfer be-
tween spatially separated entangled molecules, Angew. Chem.
Int. Ed. 56, 9034 (2017).

[6] L. A. Martínez-Martínez, M. Du, R. F. Ribeiro, S. Kéna-Cohen,
and J. Yuen-Zhou, Polariton-assisted singlet fission in acene
aggregates, J. Phys. Chem. Lett. 9, 1951 (2018).

[7] M. Tavis and F. W. Cummings, Exact solution for an N-
molecule—radiation-field Hamiltonian, Phys. Rev. 170, 379
(1968).

[8] R. H. Tichauer, D. Morozov, I. Sokolovskii, J. J. Toppari, and
G. Groenhof, Identifying vibrations that control non-adiabatic
relaxation of polaritons in strongly coupled molecule–cavity
systems, J. Phys. Chem. Lett. 13, 6259 (2022).

[9] J. A. Campos-Gonzalez-Angulo and J. Yuen-Zhou, Generaliza-
tion of the Tavis–Cummings model for multi-level anharmonic
systems: Insights on the second excitation manifold, J. Chem.
Phys. 156, 194308 (2022).

[10] Y.-T. Chuang, M.-W. Lee, and L.-Y. Hsu, Tavis-Cummings
model revisited: A perspective from macroscopic quantum elec-
trodynamics, Front. Phys. 10, 980167 (2022).

[11] M. Kasha, Energy transfer mechanisms and the molecular exci-
ton model for molecular aggregates, Radiat. Res. 20, 55 (1963).

[12] D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S.
Walker, and D. M. Whittaker, Strong exciton–photon coupling
in an organic semiconductor microcavity, Nature (London) 395,
53 (1998).

[13] J. R. Caram, S. Doria, D. M. Eisele, F. S. Freyria, T. S. Sinclair,
P. Rebentrost, S. Lloyd, and M. G. Bawendi, Room-temperature
micron-scale exciton migration in a stabilized emissive molec-
ular aggregate, Nano Lett. 16, 6808 (2016).

[14] T. Botzung, D. Hagenmüller, S. Schütz, J. Dubail, G. Pupillo,
and J. Schachenmayer, Dark state semilocalization of quantum
emitters in a cavity, Phys. Rev. B 102, 144202 (2020).

[15] G. D. Scholes, Polaritons and excitons: Hamiltonian design
for enhanced coherence, Proc. Roy. Soc. A 476, 20200278
(2020).

[16] R. F. Ribeiro, Multimode polariton effects on molecular en-
ergy transport and spectral fluctuations, Commun. Chem. 5, 48
(2022).

[17] T. F. Allard and G. Weick, Disorder-enhanced transport in
a chain of lossy dipoles strongly coupled to cavity photons,
Phys. Rev. B 106, 245424 (2022).

[18] G. Engelhardt and J. Cao, Unusual dynamical properties of dis-
ordered polaritons in microcavities, Phys. Rev. B 105, 064205
(2022).

[19] Z. Zhou, H.-T. Chen, J. E. Subotnik, and A. Nitzan, Inter-
play between disorder, local relaxation, and collective behavior
for an ensemble of emitters outside versus inside a cavity,
Phys. Rev. A 108, 023708 (2023).

[20] G. J. R. Aroeira, K. T. Kairys, and R. F. Ribeiro, Theoretical
analysis of exciton wave packet dynamics in polaritonic wires,
J. Phys. Chem. Lett. 14, 5681 (2023).

[21] V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, Cavity
polaritons in microcavities containing disordered organic semi-
conductors, Phys. Rev. B 67, 085311 (2003).

[22] P. Michetti and G. C. La Rocca, Polariton states in disordered
organic microcavities, Phys. Rev. B 71, 115320 (2005).

[23] V. M. Agranovich and Y. N. Gartstein, Nature and dynamics of
low-energy exciton polaritons in semiconductor microcavities,
Phys. Rev. B 75, 075302 (2007).

[24] A. Mandal, D. Xu, A. Mahajan, J. Lee, M. Delor, and
D. R. Reichman, Microscopic theory of multimode polari-
ton dispersion in multilayered materials, Nano Lett. 23, 4082
(2023).

[25] G. Engelhardt and J. Cao, Polariton localization and dispersion
properties of disordered quantum emitters in multimode micro-
cavities, Phys. Rev. Lett. 130, 213602 (2023).

L241303-5

https://doi.org/10.1038/nmat3950
https://doi.org/10.1038/s41598-018-27396-z
https://doi.org/10.1021/acs.jpclett.1c02644
https://doi.org/10.1002/anie.201600428
https://doi.org/10.1002/anie.201703539
https://doi.org/10.1021/acs.jpclett.8b00008
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1021/acs.jpclett.2c00826
https://doi.org/10.1063/5.0087234
https://doi.org/10.3389/fphy.2022.980167
https://doi.org/10.2307/3571331
https://doi.org/10.1038/25692
https://doi.org/10.1021/acs.nanolett.6b02529
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1098/rspa.2020.0278
https://doi.org/10.1038/s42004-022-00660-0
https://doi.org/10.1103/PhysRevB.106.245424
https://doi.org/10.1103/PhysRevB.105.064205
https://doi.org/10.1103/PhysRevA.108.023708
https://doi.org/10.1021/acs.jpclett.3c01082
https://doi.org/10.1103/PhysRevB.67.085311
https://doi.org/10.1103/PhysRevB.71.115320
https://doi.org/10.1103/PhysRevB.75.075302
https://doi.org/10.1021/acs.nanolett.3c01017
https://doi.org/10.1103/PhysRevLett.130.213602


BRADBURY, RIBEIRO, CARAM, AND NEUHAUSER PHYSICAL REVIEW B 109, L241303 (2024)

[26] M. Litinskaya and P. Reineker, Loss of coherence of exciton
polaritons in inhomogeneous organic microcavities, Phys. Rev.
B 74, 165320 (2006).

[27] E. Suyabatmaz and R. F. Ribeiro, Vibrational polariton transport
in disordered media, J. Chem. Phys. 159, 034701 (2023).

[28] N. C. Bradbury, C. Chuang, A. P. Deshmukh, E. Rabani, R.
Baer, J. R. Caram, and D. Neuhauser, Stochastically realized
observables for excitonic molecular aggregates, J. Phys. Chem.
A 124, 10111 (2020).

[29] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.109.L241303 for full description of the ex-
tended dipole model, analysis of the participation ratio in
varying molecular geometries, and analysis of the case of I
aggregates in cavities.

[30] A. P. Deshmukh, N. Geue, N. C. Bradbury, T. L. Atallah, C.
Chuang, M. Pengshung, J. Cao, E. M. Sletten, D. Neuhauser,
and J. R. Caram, Bridging the gap between H- and J-aggregates:
Classification and supramolecular tunability for excitonic
band structures in two-dimensional molecular aggregates,
Chem. Phys. Rev. 3, 021401 (2022).

[31] M. Kasha, H. R. Rawls, and M. A. El-Bayoumi, The exciton
model in molecular spectroscopy, Pure Appl. Chem. 11, 371
(1965).

[32] N. J. Hestand and F. C. Spano, Expanded theory of H- and
J-molecular aggregates: The effects of vibronic coupling and
intermolecular charge transfer, Chem. Rev. 118, 7069 (2018).

[33] S. Doria, T. S. Sinclair, N. D. Klein, D. I. G. Bennett,
C. Chuang, F. S. Freyria, C. P. Steiner, P. Foggi, K. A.
Nelson, J. Cao, A. Aspuru-Guzik, S. Lloyd, J. R. Caram,
and M. G. Bawendi, Photochemical control of exciton super-
radiance in light-harvesting nanotubes, ACS Nano 12, 4556
(2018).

[34] A. P. Deshmukh, D. Koppel, C. Chuang, D. M. Cadena, J. Cao,
and J. R. Caram, Design principles for two-dimensional molec-
ular aggregates using Kasha’s model: Tunable photophysics in
near and short-wave infrared, J. Phys. Chem. C 123, 18702
(2019).

[35] L.-W. Wang and A. Zunger, Solving schrödinger’s equation
around a desired energy: Application to silicon quantum dots,
J. Chem. Phys. 100, 2394 (1994).

[36] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel
polynomial method, Rev. Mod. Phys. 78, 275 (2006).

[37] R. Kosloff, Time-dependent quantum-mechanical methods for
molecular dynamics, J. Phys. Chem. 92, 2087 (1988).

[38] A. Ioffe and A. Regel, Non-crystalline, amorphous, and liq-
uid electronic semiconductors, in Progress in Semiconductors
(Heywood, London, 1960), pp. 237–291.

[39] P. W. Anderson and P. R. Weiss, Exchange narrowing in param-
agnetic resonance, Rev. Mod. Phys. 25, 269 (1953).

[40] H. Sumi, Exciton-lattice interaction and the line shape of exci-
ton absorption in molecular crystals, J. Chem. Phys. 67, 2943
(1977).

L241303-6

https://doi.org/10.1103/PhysRevB.74.165320
https://doi.org/10.1063/5.0156008
https://doi.org/10.1021/acs.jpca.0c07953
http://link.aps.org/supplemental/10.1103/PhysRevB.109.L241303
https://doi.org/10.1063/5.0094451
https://doi.org/10.1351/pac196511030371
https://doi.org/10.1021/acs.chemrev.7b00581
https://doi.org/10.1021/acsnano.8b00911
https://doi.org/10.1021/acs.jpcc.9b05060
https://doi.org/10.1063/1.466486
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1021/j100319a003
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1063/1.435259

