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Recently we presented a method for modeling a quantum system to a bath that explicitly correlates the system
with the individual bath modes. We do this through representation of the bath by locally propagating
Gaussians (LPG), which change in position and momentum but remain Gaussian in form. The explicit
correlation of the system to the bath modes enters through the simultaneous use of a di†erent Gaussian for
each state (or grid point) of the system. In this work, we look at two possibilities for the LPG method. In the
frozen LPG, the width of the Gaussians is kept constant. In the Ñexible LPG, we relax this condition and
allow for the width to be both time dependent and complex. We present a comparative study of these two
methods and compare them with both time-dependent self-consistent Ðeld calculations (TDSCF) and an exact
quantum calculation. The two LPG methods, in comparison with TDSCF, more accurately describe the exact
dynamics. The di†erence is especially noticeable in the case of weak coupling, where the averaging done in
TDSCF is an oversimpliÐcation of the system.

1 Introduction

In spite of the rapid increase in computer speeds in recent
years, the exact modeling of a full quantum system remains a
daunting task. Full quantum calculations grow exponentially
with respect to the number of coupled degrees of freedom;
therefore, there has been a continual search for algorithms
that give accurate results with minimal computational e†ort.
Consequently, quantum algorithms have developed in two
general directions. First, methods for simulating strongly
coupled large-amplitude bound and scattered motion for
three- and four-body systems have been developed. This is a
gargantuan undertaking, because four-body systems require
the writing of (at least) six-dimensional wavefunctions.1h3

An alternate approach is to look at larger problems, where
most of the degrees of freedom are harmonic-like, while only a
very few (typically one) degrees of freedom are allowed to be
non-harmonic. These type of problems, starting from the well-
known spin-boson problem (where a single two-state system is
coupled to many harmonic oscillators), have been treated by a
host of methods, including path-integral and semi-classical
methods,4h13 matrix-transfer approaches,14,15 and coupled
channel techniques.16h19 However, the eventual goal (i.e., the
treatment of a large system with many anharmonic degrees of
freedom, coupled to a large bath) is still exceptionally chal-
lenging.

The simplest approach which combines a large bath of
oscillators with a system consisting of several degrees of
freedom is the time-dependent self-consistent Ðeld approx-
imation (TDSCF).20 In this method, only the expectation
values of each degree of freedom are coupled to the other
degrees of freedom. TDSCF does not account for the fact that
the system and the bath are inter-correlated. For example, if
the system is composed of several weakly connected parts,
then the bath should, in fact, respond di†erently to di†erent
parts.

A simple approach beyond TDSCF can be derived, as
follows. Bath modes are typically only weakly anharmonic ;
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therefore, they can usually be reasonably approximated by a
harmonic potential. For a purely harmonic potential, it is well
known that an initial Gaussian wavepacket remains Gaussian
over time with only its average position, average momentum,
and width parameters changing with time. One can postulate
that Gaussian behavior should be reasonably accurate even
when there is systemÈbath coupling ; however, to take into
account the fact that the bath is inÑuenced by the system, and
that this inÑuence is di†erent for di†erent system states, we
make the following ansatz : the parameters of the Gaussians
that describe the bath are allowed to depend on the system
states. Thus, we end up with an ansatz in which the system
and the bath are intrinsically coupled. The approximation is
labeled locally-propagating Gaussian (LPG), to emphasize
that the bath-Gaussians are propagated di†erently for di†er-
ent states.

Historically, the advantage of Gaussian wavepackets
(GWP) has been well recognized for over the past two
decades. Heller originally recognized the advantage of using
frozen Gaussian wavepackets on a slowly varying potential.21
Later, time variational methods were used to propagate these
frozen GWP (refs. 22 and 23), and Ñexible GWP.24 Out of this
initial work there has been a resurgence of interest in
GWP.25h30 Of particular interest here is the use of one frozen
GWP per site for coupled electron/nuclear motion.25 That
work, by Diz, Deumens and Ohrn (and the equations used) is
analogous to the description here, except for two aspects : the
eventual goal, systemÈbath combinations for a general multi-
(and continuous) degree of freedom system; and the use of
Ñexible LPGs, which, in their most complete forms, allow the
use of di†erent bath-modes combination for di†erent system
sites. On a more general note, the Heisenberg representation
was used to propagate frozen GWP.26 Another method which
uses Gaussians is the multiple spawning approach, where an
increasing number of frozen-width Gaussians, driven by clas-
sical equations, are used as a basis-set for electronic non-
adiabatic problems.29,30 We also mention the suggestion to
represent the bath by a product of system-dependent TDSCF
modes, rather than Gaussian wavepackets.15

The LPG work is fundamentally related to the small-
polaron transformation. The small-polaron transformation is
an approach to introduce correlation between system and
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Fig. 1 Potential curves used for testing the LPG studies, on a two-
state electron-transfer problem, coupled to a single vibrational-degree
of freedom (x). The two solid lines note the diabatic representation,
and the dashed lines denote the adiabats. The plots are made for the
second and third case in Table 1 (with a slightly lower potential
minimum on case II). X marks the placement of the initial Gaussian
wavepacket, in the text) for case III.(x6

bath modes through the use of a time-independent correlation
factor which shifts the position of the harmonic oscillator for
each bath by an amount which is dependent on the
system.31,32 Indeed, in a special case of frozen width, the LPG
can be thought of as a time-dependent generalization of the
small-polaron transformation.

Although the LPG is easily applied to large-scale calcu-
lations, we look here at a simple electron transfer between two
valence atoms for our initial comparative studies. This is an
example of curve crossing (Fig. 1). (We have encouraging
results when looking at a many site proton-transfer system.
This will be presented in a later publication.)

In this article, we present both the frozen and Ñexible LPG,
along with a comparison with TDSCF and a full quantum
calculation. In Section 2, the TDSCF is reviewed for peda-
gogical reasons. Then we show the extension to frozen-width
LPG. Lastly in this section, we present the new equations for
the propagating width. In Section 3, initial results are present-
ed in which the three methods are compared with a full
quantum calculation for the simple electron-transfer two site
system. In Section 4, we very brieÑy discuss the ability to
model a multi-site system, in which one degree of freedom is
exactly done by a quasi-continuous grid and the bath is
treated with LPG. Section 5 concludes.

2 Methodology
Throughout the discussion, we consider a systemÈbath com-
bination with the following Hamiltonian :

H \ Hbath] Hsystem] Hmix (1)

In these calculations we assume that the bath is a series of N
harmonic oscillators. The system is composed of system states
denoted by o iT. The number of the system states (sites) may
vary from 2, as in two-site electron transfer, to a much larger
number for a system composed of a quasi-continuous degree
of freedom. In this initial calculation, the mixing term that
couples the harmonic oscillators and the system is assumed to
be a linear. The components of the Hamiltonian are then :

Hbath\
p2
2m

]
x Æ i Æ x

2
4 ;

n

p
n
2

2m
] ;

ln

x
n
i
ln

x
l

2
(2)

Hsystem \ ;
i, j/1

sites
o iTh

ij
S j o (3)

Hmix\ ;
i/1

sites
D

i
Æ x o iTSi o (4)

where l and n are the indices for the N bath dimensions ; x and
p are the bath position and momentum, respectively ; m is the
oscillatorsÏ mass (assumed for simplicity to be bath-mode
independent) and i is the force constant tensor. The term ish

ijthe matrix element of the system Hamiltonian which can
include both diagonal and o†-diagonal terms. The mixing
term is assumed here to be local so that it(D

i
Æ x \&

n
D

in
x
n
)

does not explicitly couple the di†erent sites o iT and o jT, but
only each site to the bath (a more general coupling can be
assumed). Note that the coupling term makes the overall
potential energy surface anharmonic in the bath coordinate.

2.1 TDSCF

For reference, we Ðrst examine the TDSCF formalism for the
above Hamiltonian. In the TDSCF the e†ects of the bath and
system are separately averaged. The time dependent wave-
function is completely separated into a purely site-dependent
component and a purely bath-dependent component. The
TDSCF wavefunction is then :

W(i, x, t) \ g(x, t)t
i
(t) (5)

For a harmonic bath, the bath-dependent part g(x, t) is a
multi-dimensional Gaussian :

g(x, t) \
(det M3 )1@4

nN@4

] exp
C
[

1

2
(x [ x6 ) Æ M3 Æ (x [ x6 ) ] ip6 Æ x

D
(6)

where and where are the time-dependent average posi-x6 (t) p6 (t)
tion and average momentum for the bath. For TDSCF, isM3
time independent and positive-deÐnite with eigenvalues
denoted by M1/p

n
2N

n/1N .
Given this form of g, the propagation of the wavefunction

in terms of and is easily derived from the Frenkelx6 , p6 , t
ivariational principle,33 i.e. by minimizing the functional :

A\
P
0

=T
W
K
H [ i

L
Lt
K
W
U

dt (7)

where + \ 1. (This same method will also be used to derive the
LPG equations of propagation.) Inserting eqn. (5) into eqn.
(7), it can easily be shown that :

A\
P
0

=
dt
G

;
j/1

sites CA
E1 ] x6 Æ

Lp6
Lt

] x6 ÆD
j

B
ot

j
o2

[ it
j
*

Lt
j

Lt
D

] ;
j, k/1

sites
t

j
* h

jk
t

k

H
(8)

For simplicity, we have deÐned as the oscillator energy rela-E1
tive to the minimum bath potential. It is calculated as E1 \
12(&n

w
n
] x6 Æ i Æ x6 ] p6 2/m).

All of the equations of motion are found by minimizing the
functional A. For the derivative of A with respect toLt

i
/Lt, t

i
*

is taken and set to zero for each time step. The resulting equa-
tion is :

Lt
i

Lt
\ [i

GA
x6 Æ

Lp6
Lt

] E1 ] x6 ÆD
i

B
t

i
] ;

j/1

sites
h
ij
t

j
(9)

The equation for the propagating of the average momentum is
found by putting resulting inLA/Lx6 \ 0,

Lp6
Lt

\ [
A

x6 Æ i ] x6 Æ ;
i/1

sites
D

i

B
(10)
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To Ðnd an expression for the propagation of a canonicalx6 ,
transformation is used. DeÐning

t
i
\ /

i
e~ixx Õpx (11)

it is straightforward to show that A can be restated as :

A\
P

dt
G

;
j/1

sites CA
E1 [ p6 Æ

Lx6
Lt

] x6 ÆD
j

B
o/

j
o2

[ i/
j
*

L/
j

Lt
D

] ;
j, k/1

sites
/

j
* h

jk
/

k

H
(12)

Notice the has been replaced by a Di†er-x6 Æ Lp6 /Lt [Lx6 /Lt Æ p6 .
entiation of eqn. (12) with respect to yields :p6

Lx6
Lt

\
p6
m

(13)

The Ðnal TDSCF eqns. (9), (10) and (13), are simultaneously
propagated. The coupling between the sites is only dependent
on the o†-diagonal elements of the term.h

ij

2.2 Frozen LPG

In the LPG method the TDSCF is extended to have a Gauss-
ian on each site coordinate. The resulting equations are pre-
sented here for completeness, and are analogous to those in
refs. 25 and 34. We amend the wavefunction to be written as :

W(i, x)\ g
i
(x, t)t

i
(t) (14)

where now is a site-dependent Gaussian and has the form:g
i

g
i
(x, t)\

det(M3
i
)1@4

nN@4

] exp
C
[

1

2
(x [ x6

i
) Æ M3

i
Æ (x [ x6

i
)] ip6

i
Æ x
D

(15)

The bathÏs variables and are, respectively, thex6
i
, p6

i
M3

iaverage position, average momentum and the tensor width for
the ith Gaussian. (Note the exact meaning of It is a vectorx6

i
.

of N variables, where refers to the average positionx6
ni
(t), x6

ni
(t)

of the nth bath degree of freedom for system site i.) In the
frozen Gaussian equations for LPG, we take to be timeM3

iindependent and real. These conditions will be removed for
the Ñexible LPG in Section 2.3.

An important distinction of LPG from TDSCF is that the
coupling between sites is inÑuenced by the overlap of the indi-
vidual Gaussians. We deÐne :

W
ij
\ Sg

i
o g

j
T \

P
~=

= g*(x6
i
, p6

i
, x)g(x6

j
, p6

j
, x)dx (16)

The time dependence is in and Inserting in the formx6
i
(t) p6

j
(t).

of g from eqn. (15) into eqn. (16), completing the square in the
exponential and integrating, the following form for the
overlap as follows :W

ij

W
ij
\ exp

G
[

1

4p2
[(x6

i
[ x6

j
)2 ] p4(p6

i
[ p6

j
)2

]2ip2(x6
i
] x6

j
) Æ (p6

i
[ p6

j
)]
H

(17)

This will be used in the derivation of the equations of motion.
Substituting eqns. (14) and (15) for the wavefunction into

eqn. (7), the functional A is now written as :

A\
P

dt
G

;
j/1

sites CA
E1

j
] x6 ÆD

j
] x6

j
Æ
Lp6

j
Lt
B

ot
j
o2

[ it
j
*

Lt
j

Lt
D

] ;
j, k/1

sites
t

j
* h

jk
t

k
W

jk

H
(18)

Notice that now the coupling between sites depends not only
on but also on the Gaussian overlap as expected.h

jk
W

jk
,

Once again we minimize A to get equation of motion for
the variables. First taking the derivative with respect to t

i
* ,

we very simply get :

Lt
i

Lt
\ [i

CA
x6
i
Æ
Lp6

i
Lt

] E1
i
] x6

i
ÆD

i

B
t

i

] ;
j/1

sites
W

ij
h
ij
t

j

D
(19)

Here, is the sum of the oscillators energies relative to theE1
iminimum for the ith site and is likewise calculated to be

12(&n
w

n
] x6

i
Æ i Æ x6

i
] p6

i
2/m).

Similarly, we take the derivative of A with respect to x6
i
.

Using the deÐnition of the Gaussians and some simple
algebra, it follows that :

Lp6
i

Lt
\ [

G
x6
i
Æ i ] D

i
] Re

C 1

t
i

;
j/1

sites
h
ij
t

j
W

ij

]
C 1

p2
(x6

j
[ x6

i
) ] i(p6

j
[ p6

i
)
DDH

(20)

As was done for the TDSCF case, we take the canonical trans-
form to get an equation for the time dependence of leadingx6

i
,

to :

Lx6
i

Lt
\

p6
i

m
] Re

C 1

t
i

;
j/1

sites
h
ij
t

j
W

ij
[p2(p6

j
[ p6

i
) [ i(x6

j
[ x6

i
)]
D

(21)

In eqns. (20) and (21) the last term (the summation) is new
(di†erent from TDSCF), for it explicitly accounts for the coup-
ling between sites.

Because the number of real variables is just 2] 2N per
system site, the LPG eqns. (19), (20) and (21) are efficient to
solve. Note that the o†-diagonal terms in eqn. (19) are depen-
dent on the overlap and determine the coupling between the
sites. These terms vanish if (small overlap).W

ij
+ 0

2.3 Flexible LPG

In this current work, we expand the LPG method to allow for
the widths of the site Gaussians to change with time. For sim-
plicity, we have assumed that width tensor is diagonal.M3

iNow the Gaussian has the form:

g
i
\ oN

i
oexp[[12(x [ x6

i
) Æ M3

i
Æ (x [ x6

i
) ] ip6

i
Æ x] (22)

where the normalization constant is determined to be

oN
i
o\ det

ARe M3
i

nN

B1@4
(23)

so that it is time dependent and complex. NoticeM3
i
\ M3

i
(t)

the importance of using a complex width tensor. If wasM3
ionly allowed to be real, use of the Frenkel variational method

would result in canceling of all the propagating terms in M3
i
.

The Gaussian has a real normalization constant, since its
phase factor is absorbed into the complex t

i
.

The overlap is now slightly more complicated. Remember-
ing the deÐnition from eqn. (16) we Ðnd :

W
ij
\
A4 det(Re M3

i
*) Æ det(Re M3

j
)

det(M3
i
* ] M3

j
)2

B1@4
exp
G
[

1

2
(M3

i
* ] M3

j
)~1

] [(x6
i
[ x6

j
) Æ M3

i
* Æ M3

j
Æ (x6

i
[ x6

j
) ] (p6

i
[ p6

j
)2

] 2i(p6
i
[ p6

j
) Æ (M3

i
* Æ x6

i
] M3

j
Æ x6

j
)]
H

(24)

The new form of the Gaussian is now substituted into eqn.
(14). Once again we use the Frenkel variational principle,
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which leads here to :

A\
P
0

=
dt
G

;
j/1

sites CA
E1

j
] x6

j
ÆD

j
[

1

4

A
Re M3

j
~1 Æ

LIm M3
j

Lt
B

] x6
j
Æ
Lp6

j
Lt
B

ot
j
o2 [ it

j
*

Lt
Lt
D

] ;
j, k/1

sites
W

jk
h
jk

t
j
* t

k

H
(25)

The functional A has the same form as for the frozen LPG,
except for the dependence on M3

i
.

Minimizing A with respect to follows exactly as beforet
i
*

to give :

Lt
i

Lt
\ [i

CA
E1

i
] x6

i
ÆD

i
[

1

4
Tr
A
Re M3 ~1 Æ

LIm M3
i

Lt
B

] x6
i
Æ
Lp6

i
Lt
B
t

i
] ;

j/1

sites
h
ij
t

j
W

ij

D
(26)

Minimizing A with respect to gives :x6
i

Lp6
i

Lt
\ [

G
x6
i
Æ i ] D

i
] 2Re

C 1

t
i

;
j/1

sites
h
ij
t

j
W

ij
(M3

i
* ] M3

j
)~1

] (M3
i
* Æ M3

j
Æ (x6

j
[ x6

i
)] iM3

i
* Æ (p6

j
[ p6

i
)
DH

(27)

A canonical transform is done for the derivation of the equa-
tion of motion for The resulting equation for the propaga-x6

i
.

tion of is :x6
i

Lx6
i

Lt
\

p6
i

m
] 2Re

C 1

t
i

;
j/1

sites
h
ij
t

j
U

ij
(M3

i
* ] M3

j
)~1

Æ [(p6
j
[ p6

i
)[ iM3

j
Æ (x6

j
[ x6

i
)]
D

(28)

where a transformed overlap is deÐned as :

U
ij
\ W

ij
ei(xx iÕpx i~xx jÕpx j) (29)

Now to Ðnd the equations of motion for the Ðrst theM3
i
,

derivative of A is taken with respect to Re This gives :M3
i
.

LIm M3
i

Lt
\ [2[Re M3

i
]2 Æ Re

G 1

t
i

;
j/1

sites
h
ij
t

j
W

ij

] [Re M3
i
~1[ 2(M3

i
* ] M3

j
)~1

[ 2[(M3
i
* ] M3

j
)~1(M3

j
(x6

i
[ x6

j
)] i(p6

i
[ p6

j
))2]]

H
(30)

Now a canonical transform is done, but this one interchanges
Im with Re The transform isM3

i
M3

i
. exp([iIm M3

i
ÆRe M3

i
~1).

Applying this transform, it can be shown that :

LRe M3
i

Lt
\ [2[Re M3

i
]2 Æ Re

G i
t

i

;
j/1

sites
h
ij
t

j
W

ij

] [Re M3
i
~1[ 2(M3

i
* ] M3

j
)~1

[ 2[(M3
i
* ] M3

j
)~1(M3

j
(x6

i
[ x6

j
)

] i(p6
i
[ p6

j
))]2
H
e(~i@4)(ReMy i~1ÕImMy i~ReMy j~1ÕImMy j)

H

(31)

For the Ñexible Gaussian, we now have extra complex degrees
of freedom so that there are 2 ] 4N equations to be solved.

We will compare the results of the above three methods
(TDSCF, Ñexible LPG and frozen LPG) to a full calculation
whereby one solves :

LW(i, x6 , t)
Lt

\ [i
GA p2

2m
]

x Æ i Æ x
2

] x ÆD
i

B
W(i, x, t)

] ;
j/1

sites
h
ij
W( j, x, t)

H
(32)

3 Model application
3.1 Model system

For our test model, we study a two-site electron transfer
coupled to a single harmonic oscillator. The “systemÏ is
deÐned as the electronic part and the bath is deÐned as a
single (N \ 1) vibrational mode. Then the Hamiltonian with
local mixing can be written as :

H \
C1
0

0

1

D p2
2m

]
Cmu12

0

0

mu22
D x2

2

]
Cv1

C

C

v2

D
]
CD

[D

D
x (33)

where the matrix notation refers to the electronic sites. The
TDSCF and LPG propagations were done with a RungeÈ
Kutta method. The exact propagation was done with a
Chebyshev approach.35

3.2 Results

We performed several studies which are detailed below. The
studies demonstrate how both versions of the LPG equations
are more accurate than TDSCF, especially when di†erent fre-
quencies are used for each well. The Ñexible Gaussians are not
better for short times but signiÐcantly improve over the frozen
in intermediate times.

The conditions for the simulations are shown in Table 1.
The Ðrst four cases are similar to those studied in an earlier
letter (where the frozen LPG method was discussed). In those
cases, the oscillator mass was 17 u, the frequency u\ 0.05 eV
and the coupling small D\ 0.03 eV. The coupling was chosen
to be small because in future simulations the LPG approx-
imation will only be used for coordinates with small(x

n
)

mixing values The strongly mixed coordinates will be cal-D
in

.
culated exactly. In all cases, we placed the initial wavepacket
on diabat 1, with zero momentum. The initial values of x6 1,2are given in Table 1.

A practical difficulty is that the equations for the Gaussian
position and width are undeÐned for sites that have zero
population For that reason we always initially placed(t

i
\ 0).

a small component on the initially-empty diabat. In our case
we used and the remaining portion, 0.1, ont1 \ (0.99)1@2
diabat 2. On both diabats, the Gaussians were initially given
the same average position In practice, we found that thex6

i
.

results were insensitive to the value of the wavefunction coeffi-
cients on the second diabat, as long as these were sufficiently
small.

We examined the probability that the electron is on the
initial site, which we denote simply (formally referring tooW1o2
/ o W(i \ 1, x, t) o2 dx). Both LPG methods are signiÐcantly
better than TDSCF. For several vibrational periods, they
follow the full calculation reasonably well, as shown in Fig. 2.

In the second case (Fig. 3), the two diabats no longer have
the same minimum, but are o†set by 0.01 eV. Again both
LPG approximations closely follow the complete calculation,
for about 230 fs ; and again the Ñexible LPG does slightly
better a little further out in time, but not as well initially.

Note that in the third case (Fig. 4), even when oscil-oW1 o2
lates in a very irregular fashion, both LPG methods follow the

Table 1 Parameters for the four test cases IÈIV

Parameter I II III IV

v1/eV 2.00 2.01 2.01 2.00
v2/eV 2.00 2.00 2.00 2.00
C/eV 0.01 0.01 0.01 0.01
x6 1,2/A� 0.15 0.15 0.03 0.15
x1/eV 0.05 0.05 0.05 0.05
x2/eV 0.05 0.05 0.05 0.075
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Fig. 2 Comparison of as a function of time for the case thatoW1 o2
the diabats have equally deep potential minimum (case I) with the
initial wavepacket placed far from the origin, at 0.15 Shown arex6 A� .
the results of the exact, both LPGs and the TDSCF calculations.

full calculation quite well, especially in comparison with
TDSCF.

In the rest of this section we examine the Ñexible vs. frozen
Gaussians features. All our simulations refer henceforth to
case I. First, we revisit Fig. 2, and note that though initially
the Ñexible LPG performs somewhat less accurately than the

Fig. 3 Comparison of as a function of time for case II. TheoW1 o2
energy of diabat 1 is displaced with respect to diabat 2 (v1[ v2\ 0.01
eV) and the initial wavepacket is placed far from the origin, at 0.15x6

Shown are the results of the exact, both LPGs and TDSCF calcu-A� .
lations.

Fig. 4 Comparison of as a function of time for case III. TheoW1 o2
energy of diabat 1 is displaced with respect to diabat 2 (v1[ v2\ 0.01
eV) and the initial wavepacket is now placed close to the origin, atx6
0.03 Shown are the results of the exact, both LPGs and theA� .
TDSCF calculations.

Fig. 5 The absolute value of the correlation between the exact time-
dependent function and the LPG function, shown for both LPG
methods (frozen and Ñexible). Case I is used.

frozen LPG, it does better at intermediate times, due to the
extra degrees of freedom. To see this better, we plot in Fig. 5
the absolute value of the correlation between the exact and
the approximate wavefunction (for case I), which shows again
that initially that the frozen LPG does better over short times.
The reason for the discrepancy is, heuristically, that the wave-
function on the second diabat is not truly a single Gaussian,
but is more accurately described by a sum of Gaussians, one
for each time that the Gaussian in the Ðrst diabat reaches the
crossing point. Thus, it has components extended over di†er-
ent regions. The Ñexible Gaussian results can be somewhat
skewed as the Ñexible Gaussian “ tries Ï to extend, so as to be
similar to a multi-Gaussian wavefunction ; the frozen Gauss-
ian is not modiÐed, and therefore performs better for short
times. At long times, however, the added degrees of freedom of
the Ñexible Gaussian make it superior.

To further elucidate the e†ect of allowing the width to vary
in the Ñexible Gaussians, we looked at two extensions of case
1. In the original runs, we chose M to be one over the square
of the natural width, which for all our cases is 200 In theA� ~2.
extensions, we used two di†erent initial values for M :
M \ 100 (the Gaussian is the natural andA� ~2 width] J2)
M \ 400 (the Gaussian is of the natural width).A� ~2 1J2)
The results for the LPGs are shown in Fig. 6. The results for
frozen LPG [Fig. 6(a)] are very dependent on the initial width
chosen. In comparison, the Ñexible LPG [Fig. 6(b)] is very
robust. Thus, for large ranges of initial widths chosen, the Ñex-
ible LPG gives very good results. For the cases we have
chosen here (one-dimensional, two-site system), it is very
simple to calculate the natural width ; however, for multi-
dimensions, anharmonicities will make the task of choosing a
“goodÏ width more difficult. The Ñexible LPG will perform
better in such cases.

For the three initial conditions for case I, we looked at the
width with respect to time (Fig. 7). There are two competing
processes occurring. At the boundaries of the potentials there
is reÑection of the wavepacket which narrows it (increase in
M). Each upward spike in M in Fig. 7 corresponds to this
reÑection. The other e†ect is the broadening that occurs as the
amplitude of the wavepacket “hops Ï from one site to the other,
each time the wavepacket passes the location of the curve
crossing. It is clear that at intermediate times this broadening
is dominant and is probably the reason that the Ñexible LPG
performs well at intermediate times.

For a one-dimensional case, there seems to be only moder-
ate improvement between the frozen and Ñexible LPG, until
long times are used. We believe this is for the following
reasons. Under the conditions chosen, the frozen LPG already
does remarkably well because the potentials are only slightly
anharmonic ; therefore, the extra degrees of freedom are(M3

i
)
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Fig. 6 Comparison of as a function of time for case I, withoW1 o2
three di†erent initial values for 100, 200 and 400 (a) showsM

i
: A� ~2 ;

the frozen LPG, (b) shows the Ñexible LPG.

only nominally able to improve the propagation of the wave-
function. We do expect to see an improvement in the case of
multi-dimensions. In this case, the Ñexible LPG method will
allow coupling between the dimensions (i.e., spreading in one
dimension while shrinking in another, as well as rotating the
coordinates). This should lead to a signiÐcant improvement
over the frozen LPG.

Finally, we note that the cases presented above have all
been presented for a very speciÐc Hamiltonian, where the fre-
quencies on each well are identical. In a preliminary investiga-
tion (Fig. 8), we examined the performance of the LPG on a
physically important case where the frequencies are also site-
dependent. SpeciÐcally, we used case I above, but modiÐed the
frequency on the second adiabat by 50% to be 0.075. In that
case the LPGs were signiÐcantly better than TDSCF; they

Fig. 7 Comparison of with respect to time for three di†erentM1initial values : 100, 200 and 400 A� ~2.

Fig. 8 Similar to Fig. 2, except that now the frequencies on each
diabat are modiÐed : on the Ðrst diabat the frequency is left at 0.05 eV,
while on the second diabat it is modiÐed to be 0.075 eV.

deviated by D10È15% from the exact result while the TDSCF
varied by up to D80%. This is very encouraging for future
extensions, since many physical systems have bath-frequencies
which are strongly dependent on the system site.

4 Future extensions
Because of its speed and ability to handle weakly coupled
systems, LPG is naturally appropriate for calculating the
quantum dynamics of large systems. We have done some
initial work on a problem of proton (rather than electron)
transfer coupled to a simple bath, i.e., a heavier atom motion,
which is treated with LPG. In that problem, the quasi-
continuous proton degree of freedom is represented by multi-
ple sites (one “site Ï for each degree of freedom) while the other
degree of freedom is treated with LPG. Initial results have
shown the frozen and Ñexible LPG to perform signiÐcantly
better than TDSCF. We will present these results in future
work.

5 Conclusions
We have presented a method, LPG, that accurately mimics a
fully quantum propagation for several vibrational periods for
weakly coupled systems without requiring extensive computa-
tional e†ort. The method assumes that the bath wavefunction
at each site is (and remains) a Gaussian, but unlike the mean-
Ðeld approximation, the Gaussian parameters depend explic-
itly on the system state (“ site Ï). We tested two forms of the
LPGs, one is the frozen Gaussian in which the width is kept
constant, the second is the Ñexible Gaussian in which the
width is complex and propagates in time. Both the Ñexible
and frozen LPG methods performed better than the TDSCF
calculations. In the simple one-dimensional case presented
here, there is only a slight improvement with the Ñexible LPG.
However, Ñexible Gaussians could be important in multi-
dimensional problems, since they allow for modiÐed coupling
between bath degrees of freedom, which changes with system
states. SpeciÐcally, non-diagonal width tensors which change
with system sites could be used to represent the change of the
normal mode character of the bath upon the change of system
state (e.g., when the system changes from reactants to
products).

Either of the LPG methods can be used in much larger
simulations than the ones presented here. The strongly
coupled system modes will be done with an explicit grid-type
calculation, and the bath can be accurately treated with LPG.
This will extend the types of problems with correlations that
can be done quantum mechanically, including many-body
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chemical reactions and electron transfer on surfaces or in large
molecules. As mentioned earlier, we have already extended the
frozen LPG to a system with a large number of sites and will
be presenting our results soon.
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