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Quantum soliton dynamics in vibrational chains: Comparison of fully
correlated, mean field, and classical dynamics

Daniel Neuhauser
Chemistry and Biochemistry Department, University of California, Los Angeles, California 90095-1569

Roi Baer and Ronnie Kosloff
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The dynamics of a chain of vibrational bonds which develop a classical solitary compression wave
is simulated. A converged fully correlated quantum mechanical calculation is compared with a time
dependent mean field approach~TDSCF! and with a classical simulation. The dynamics were all
generated from the same Hamiltonian. The TDSCF and classical calculations show a fully
developed solitary wave with the expected dependence of group velocity on amplitude. The full
quantum calculations show a solitary-like wave which propagates for a while but then degrades. The
robustness of the compression wave depends on the initial preparation. Evidence of partial
recurrence of the wave has also been observed. ©2003 American Institute of Physics.
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I. INTRODUCTION

Fermi, Pasta, and Ulam1 pioneered the numerical stud
of dynamics of a coupled chain of nonlinear oscillators a
in particular the issue of energy redistribution. The surpris
effect was that energy distribution was slow and that so
collective modes of the system persist for very long tim
These studies were extended by Toda2 who found nontrivial
integrable wavelike solutions for such systems of coup
oscillators. These waves are closely related to the nonlin
solitary wave phenomena. Rolfe, Rice, and Dancz3,4 have
studied the characters of solitary waves in a periodic chai
coupled oscillators. They found both classically and se
classically that the phenomena is rather general and tha
most any potential with a steep repulsion wall will supp
compression solitary waves. A simple reasoning is based
the fact that by compressing the bond the frequency of lo
oscillation increases, thus increasing the group velocity
the compression wave. The outcome is a wave that create
own propagating environment. The signature of this type
wave is that its group velocity increases with amplitud
Once created it moves around the chain with almost no
or change of shape.

The quantum analog of such motion is a subtle iss
Strictly speaking the linearity of quantum mechanics me
that it cannot support such nonlinear phenomena. Never
less it is clear that for short times solitary like waves ana
gous to their classical counterparts will propagate. Even
ally these waves will lose their correspondence with th
classical counterparts when the quantum-classical ana
breaks down.5,6

The most common approach of modeling a quant
many-body problem is by employing the mean field appro
mation. This approach has been applied to transport of vi
tional energy in proteins by Davidov7,8 where the problem
was cast into a nonlinear Schro¨dinger equation. The approxi
mation supports solitary wave solution. Solitary solutio
5720021-9606/2003/118(13)/5729/7/$20.00
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were also found for the mean field Gross–Pitevskii model
Bose–Einstein condensates.9

In this paper we examine quantum solitary-like compr
sion waves in molecular dynamics, specifically in polym
chains. The motivation beyond studying solitons is that th
can have several interesting properties. First, they are v
stable to disturbances. Furthermore, they can be used to
amine the properties of the medium they are at. For exam
for a system with chromophores, one can imagine excitin
chromophore on one side with a strong oscillation, inject
a soliton, which then propagates undisturbed~or only slightly
disturbed! towards the other chromophores. The time
which it arrives at the other chromophores can be timed g
ing an indication of the distance between the chromopho
Further, the soliton arrival time is a gauge of the propert
of the medium in between the chromophores.

This paper examines the properties of soliton in 1D s
tems on two levels. First, we examine, in a fully correlat
model, the stability of the solitons and the dependence
their group velocity on soliton amplitude. Due to the ste
increase in cost of the calculation the study is done fo
limited system size~8 periodic sites!. We then study the re-
lation of the exact numerical solution describing the quan
soliton to approximate models. For this purpose we comp
fully-correlated ~CI!, time-dependent self-consistent fie
~TDSCF!, and classical simulations~Cls!. In brief, the results
are that TDSCF and classical simulations are different~in the
model! by 10–20%, but give a similar dependence of t
soliton amplitude on initial excitation. Thus, it is feasible
determine soliton motion for large systems by approxim
methods.

The paper is arranged as follows: Section II has
methodology; results are presented in Sec. III; and Sec
concludes.
9 © 2003 American Institute of Physics



ce

th
n

po

-

i

a
cti

tia
r

th

e

ri-
in

rs.
ince

oint
hey

a
nd

ite
not
x-

ordi-
the
is
a-
by
oli-

or-
at

itial
nt
en-

ave,

ed
s-

n-
te

5730 J. Chem. Phys., Vol. 118, No. 13, 1 April 2003 Neuhauser, Baer, and Kosloff
II. METHODOLOGY

The system studied is of a periodic 1D vibrational latti
~Toda lattice!, with the Hamiltonian,6

H5(
j 51

N pj
2

2m
1(

j 51

N

v~xj 112xj !, ~2.1!

where we introduced the atomic positions momenta,
~identical! atomic mass, and the one-body vibrational pote
tial. We assume periodic boundary conditions, so in the
tential term thexN11 refers tox1 . The potential term has a
Toda ~Morse! form,2,6,10,11

v~u!5D0S e2 (u2r 0)/s01
~u2r 0!

s0
21D , ~2.2!

where r 0 is the equilibrium distance,u is the distance be
tween the particles, ands0 is the range of the potential.

The Hamiltonian was studied with three approaches.

A. Fully-correlated basis-set approach „quantum-CI …

In this approach the full time-dependent wave function
expanded in the vibrational coordinate

C~x,t !5(
n

an~ t !fn1
~x1! ¯ fnN

~xN!, ~2.3!

where

x[x1,x2, . . . ,xN ,

n[n1,n2, . . . ,nN , ~2.4!

and we introduced the one-body basis functions, which
constructed as eigenstates of a zeroth-order nonintera
Hamiltonian,

Ĥ0f j~xj !5S p2

2m
1v0~xj ! Df j~xj !5e jf j~xj !, ~2.5!

and where we introduced the one body vibrational poten
v0(xj )5 (k/2) (xj2r 0)2 associated with the zeroth-orde
Hamiltonian and associated eigenvalues.

The Hamiltonian becomes a simple sparse matrix in
vibrational representation. The diagonal element is

Hn;n5(
j

^fnj
u

pj
2

2m
ufnj

&1(
j

vnj ,nj 11 ,nj ,nj 11

j , ~2.6!

where

vk,l ,m,n
j [^fkf l uv~xj 112xj !ufmfn&. ~2.7!

The only nonzero off-diagonal elements are near
neighbor ones. Specifically givenn Eq. ~2.4!, andk the same
asn except forkjÞnj , then

Hk;n5^fkj
u

pj
2

2m
ufnj

&1vnj 21 ,kj ,nj 21 ,nj

j 21 1vkj ,nj 11 ,nj ,nj 11

j .

~2.8!

The second case is forkjÞnj andkj 11Þnj 11 then

Hk;n5vkj ,kj 11 ,nj ,nj 11

j , ~2.9!

where these expressions are cyclic inj ~i.e., j 11[1 when
j 5N, etc.!.
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The expansion of the wave function is limited nume
cally by two simple criteria; finiteness of the expansion
each dimension

0<nj,nmax, ~2.10!

and an energy criteria

Hn;n<Emax, ~2.11!

wherenmax andEmax are numerical convergence paramete
The locally based expansion can pose a problem s

the soliton is nonsymmetric with a different frontal~pushing!
and backward~pulling! profile. Therefore, after a soliton
passes a component of the vibrational lattice, the lattice p
are expected to be translationally shifted even though t
start and end with zero momentum. This is similar to
mechanism whereby a falling cat does a rotational shift a
ends up on its feet. The difficulty is caused by the fin
basis-set representation of the wave function which is
translationally invariant, i.e., the quality of the basis set e
pansion degrades when one adds a large shift to the co
nates. The basis set is optimized for vibrations around
equilibrium particle points. In the present simulation th
problem is overcome by employing a pair of counterprop
gating solitons, so any vibrational shift of the coordinates
a passing soliton is negated at later times by the other s
ton. Although the Hamiltonian seems simpler in bond co
dinates it is more difficult to impose the constraint th
( juj50 ~periodic condition! i.e., the sum of bond-
coordinates is zero~modulus the ring length!. For this reason
atomic positions were used.

There are two possible approaches to define the in
wave functionC0 . In the first, it is determined as a cohere
state with a specific position and momentum in each dim
sion, as follows: We choose classical initial coordinates,x̄ j

so that the bonds, defined as

uj5 x̄ j 112 x̄ j ,

uN5 x̄12 x̄N , ~2.12!

are essentially distributed as a Gaussian compression w

uj52ū expS 2
~ j 2 j 0!2

2w2 D1const. ~2.13!

The constant is determined from the requirement that( juj

50, and the width of the compression wave is typicallyw
5&. The magnitude of the compression wave is determin
by ū and j 0 is the atom at the center of the initial compre
sion wave.

The classical initial position~and vanishing initial mo-
mentum! determine the initial coherent state in each dime
sion. For each atomj we then determine a coherent sta
z j (x) based on the initialx̄ j , and determine its coefficient

z j5cj (
n50

nmax21

bjnfn~xj !, ~2.14!



th

t
ia
ry

I

ei
lo
ic
n
ne

ni

-

o
fo
el
s

ter-

tta
in

en-
m

on

t as
are
par-

m-

5731J. Chem. Phys., Vol. 118, No. 13, 1 April 2003 Quantum soliton dynamics
where the general coherent state~for general v0) is bjn

5^fnuexp(2ipx̄j)uf0&. In this example we chosev0 to be
harmonic, so thefn are harmonic oscillator eigenstates wi
the associated analytic expression forbjn . The total initial
wave function is finally determined as10,11

an5)
j

bjn j
. ~2.15!

The second approach for initiating the dynamics aims
physically mimic the way that a soliton is created. The init
step is to relax the chain. This is done with an imagina
time propagation@i.e., acting with exp(2Ht)] with t suffi-
ciently large, using a standard Chebychev propagation.12 Af-
ter that, a force is applied for a short time on one atom.
practice, one adds to the Hamiltonian a term2 f (t)x1 , where
f is the force~of constant magnitudef 0 up to time t f , and
zero afterwards! and x1 is the coordinate of the first atom
~where the pushing is applied!. This term gives rise, in the
basis-set picture, to the following addition toH:

Hk;n→Hk;n2 f ~ t !^fk1
ux1ufn1

&P j52Ndkjnj
.

The two choices of the initial wave packet have th
pros and cons. The initial coherent state is intimately ana
gous to a classical description; however, the second cho
of a relaxed initial state, leads to damping of contributio
which are unrelated to the soliton, thereby allowing a clea
soliton.

With either of the choices to start the dynamics, the i
tial wave function is then propagated forward in~real! time
using the Chebychev propagation13 with the sparse Hamil-
tonian.

The average one-body position~and analogously the mo
mentum! are then plotted as a function of time,

^xj&[^C0uxj uC0&5(
kjnj

xj ;kj ,nj
r j ;nj ,kj

, ~2.16!

where

r j ,kj ,nj

5 (
n1 ,n2 , . . . ,nj 21 ,nj 11 , . . . ,nN

an1 ,n2 , . . . ,nj 21 ,n8,nj 11 , . . . ,nN
*

3an1 ,n2 , . . . ,nj 21 ,n,nj 11 , . . . ,nN
, ~2.17!

xj ;kj ,nj
5E fkj

* ~xj !xjfnj
~xj !dxj . ~2.18!

B. Time dependent self-consistent field
approximation „quantum-TDSCF …

Self consistent mean field approximations are comm
in many body problems. In a time dependent framework
multimode molecular systems the method is w
developed.14,15 For the system of coupled oscillators the a
sociated equations are

C~x,t !5)
j

z j~xj ,t !, ~2.19!
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where the time-dependent individual functions are de
mined from

i\
]z j

]t
5hjz j , ~2.20!

with the local mean field Hamiltonian,

hj5
p2

2m
1E v~xj 112xj !uz~xj 11!u2dxj 11

1E v~xj2xj 21!uz~xj !u2dxj 21 . ~2.21!

This equation is solved also by expandingz j into a sum
over vibrational eigenstates with standard Runge–Ku
time-propagation. The initial wave function is the same as
the full-CI approach, and the average position and mom
tum as a function of time are trivially determined fro
z j (xj ,t).

C. Classical simulations

Classical simulations are run by integrating the Hamilt
equations of motion generated from the Hamiltonian~2.1!.
The initial conditions are given byxclassical,j (t50)5 x̄ j .

FIG. 1. ~Color! Schematic model of the lattice and the bond displacemen
a function of time. In the sterioscopic projection the compression regions
shown as ridges. Two compression waves are produced starting from
ticle 1 (ū51). The plot is produced by interpolating the value of the a
plitudes on each bond.
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FIG. 2. ~Color! Comparing the com-
pression wave propagation on a per
odic structure composed of eigh
particles for the different initial condi-
tions for the quantum-CI calculation
The left panels show the classical-lik
initial conditions. The right panels
show the impulsive initial conditions.
The group velocity of the initial state
with ū150.5 wasvg51.15 for ū151,
vg51.12 and forū152, vg51.3.
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III. RESULTS

The first set of simulations was on a small periodic s
tem, withN58 atoms. The parameters used were

\51, m51, D051, s051, r 050.5, k51,

wherer 0 is immaterial for the true fully-correlated dynamic
and just shifts the equilibrium bond distance.

For this system a converged quantum calculation is p
sible therefore it serves as benchmark for the TDSCF
classical approximations.

Figure 1 shows a schematic view of the system and
bond displacements as a function of time. The calculat
presents the quantum-CI results where the bond distanc
the wave function is defined as in Eq.~2.12!,

uj5^xj 11&2^xj&.

The wave is initiated by compressing bond 1. It th
propagates simultaneously to both sides of the chain. At t
t54 the compression wave collides at bond 4. The wa
survive the collision and the two compression waves proc
on until the next collision.

Figure 2 compares the propagating waves initiated
two set of initial preparations for three initial conditions f
the displacement,ū50.5, 1, 2. The group velocity increase
with amplitude which is in accordance with their solita
character. The two waves propagate and wrap around du
the periodic boundary conditions. The waves are seen to
-

s-
d

e
n
in

e
s
d

y

to
r-

vive at least 10 revolutions, but their amplitude seems
decrease, indicating that the solitary character is degrad

The compression wave generated by the impulsive ini
condition is more robust. The solitary-like wave survives f
a longer period than the one generated from the class
initial conditions. Figure 3 shows a longer time propagati
for ū52. The compression waves show a partial revival p
tern after 80 time units.

Figure 4 is a comparison of the bond displacement
the full CI calculation the approximated TDSCF, and t
classical calculation Cls. The TDSCF equations are non

FIG. 3. ~Color! Quantum-CI calculation for longer propagation time wi

classical-like initial conditions showing recursions (Ū52).
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FIG. 4. ~Color! Comparing the com-
pression wave propagation on a per
odic structure composed of eigh
bonds for the same initial conditions
for the quantum-CI calculation,
quantum-TDSCF calculation, and th
classical calculation-Cls. The initia

displacement isŪ50.5. The right
panel shows a stereoscopic projectio
and the left panel shows a colore
contour map. The blue color indicate
regions of compression.
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ear, so it is not surprising that the soliton survives for inde
nitely many oscillations. The soliton survives intact the pe
odic collisions with the opposite solitary wave.

The results of Figs. 2 and 3 are quantified in Fig.
which shows that the velocity of the waves~estimated from
the time it takes the soliton to re-encounter! is a rising func-
tion of its amplitude.

The TDSCF and the fully-correlated results are similar
very short-times, as expected. Later, the group velocity in
TDSCF is slower than the fully-correlated approach. A p
sible reason for the difference in group velocity is that t
TDSCF approximation is coordinate dependent. The opti
coordinates for the mean field TDSCF are those which m
mize the correlation, i.e., the normal coordinates of the ch
a choice adopted by Dancz and Rice.3 The classical-like local
atomic coordinates are not optimal for describing the moti

Interestingly, there is another hint of soliton behavior
the full-CI study of Fig. 4, as the primary soliton wave
-
-

,

t
e
-

al
i-
in

.

accompanied by regular, slower waves. This is much m
evident in Fig. 5, which shows the TDSCF results for a mu
larger chain~with 64 atoms! where the slow wave which
accompanies each soliton is clear. The speed of that w
does not increase with soliton speed.

The classical and the TDSCF results are similar but
identical~cf. Figs. 5 and 6!. The TDSCF wave is more robus
and has a slower group velocity. We have also studied
soliton behavior as a function of the quantum nature of
problem, i.e., of\. Figure 7 shows the velocity-amplitud
relation for both TDSCF with several values of\ ~1 and 2! as
well as the classical results. Interestingly, the TDSCF res
do not match the classical results even in the limit of\ small.
For the normal coordinate TDSCF, Dancz and Rice3 were
able to map the quantum TDSCF propagation to a class
one with softer scaled parameters. This is in agreement w
the slower group velocity found in the present TDSCF.
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FIG. 5. ~Color! TDSCF compression
wave for 64 particles forū50.5 top
and ū51 middle and ū52 bottom.
The increase in group velocity with
amplitude is apparent. An accompany
ing acoustical wave is clearly seen fo
the ū52 case.
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It is also found that the full-CI result is faster than th
classical and TDSCF result.

Figure 8 is analogous to Fig. 4, but for a higher value
\~2!. Two interesting points are first that the soliton seems
survive longer for the more quantum case (\52); this may
be a result of the fewer quantum states that the soliton
break up into. Another interesting aspect is that the soli
seems to regenerate itself a long-time after breaking up. T
phenomena was persistent in all convergence tests. It c
be analogous to another regeneration phenomena in qua
dynamics, partial regeneration of quantum wave packets16

IV. DISCUSSION

In this work we studied the properties of quantum so
tons in vibrational systems. Several interesting aspe
emerged:

First, solitary-like compression waves were shown
persist for many collisions in a vibrational systems coup
by anharmonic force fields. Due to the exponential growth
computation time the study was limited to a small chain
the quantum regime with effective low mass or high\. Nev-
f
o

n
n
is
ld

um

-
ts

d
n

ertheless based on the current calculations it seems th
compact compression wave would propagate at least
bonds and may show revival of amplitude further down t
chain.

Next, TDSCF, classical and fully-correlated resu
showed similar trends in the speed-amplitude relations,
the locally based TDSCF shows a slower group velocity
the compression wave. This suggests that locally based m
field approximations7 are not good enough models for qua
tum dynamics.

These results can be extended in several directions. F
the nonlinear speed-amplitude relation makes it possible
imagine applications whereby a chirped pulse on, e.g
chromophore, is used to launch a soliton in which the ex
tation reaches a specific atom by a shock-wave mechan
~i.e., all the excitation would reach a specific atom in ta
dem!. Thus, soliton-based cleavage can be imagined.

A second possible application is towards planning alg
rithms whereby one seeks to study, e.g., distances betw
chromophores. By launching a wave packet from one s
and timing its arrival at another site~at which point the other
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FIG. 6. ~Color! Classical compression
wave for 64 particles forū50.5 top
and ū51 bottom. The main compres
sion waves are followed by weake
acoustical waves with constant grou
velocity.
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F
FIG. 7. ~Color! Amplitude vs group velocity for the classical and TDSC
compression wave propagation with different values of\. Black classical,
blue TDSCF\52, green TDSCF\51, pink TDSCF\50.5.

FIG. 8. ~Color! Full CI compression wave with effective\52 for nine
particles.
chromophore can, e.g., increase its oscillation!, the distance
between the chromophores can be studied, as well as
elastic properties of the material in-between.
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