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Quantum soliton dynamics in vibrational chains: Comparison of fully
correlated, mean field, and classical dynamics
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The dynamics of a chain of vibrational bonds which develop a classical solitary compression wave
is simulated. A converged fully correlated quantum mechanical calculation is compared with a time
dependent mean field approaCFiDSCH and with a classical simulation. The dynamics were all
generated from the same Hamiltonian. The TDSCF and classical calculations show a fully
developed solitary wave with the expected dependence of group velocity on amplitude. The full
quantum calculations show a solitary-like wave which propagates for a while but then degrades. The
robustness of the compression wave depends on the initial preparation. Evidence of partial
recurrence of the wave has also been observed®0@3 American Institute of Physics.
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I. INTRODUCTION were also found for the mean field Gross—Pitevskii model for

Fermi, Pasta, and Ulahpioneered the numerical study Bose—E!nsteln condensafes. ) .

of dynamics of a coupled chain of nonlinear oscillators and ' this paper we examine quantum solitary-like compres-
in particular the issue of energy redistribution. The surprisingsion waves in molecular dynamics, specifically in polymer
effect was that energy distribution was slow and that somé&hains. The motivation beyond studying solitons is that they
collective modes of the system persist for very long timescan have several interesting properties. First, they are very
These studies were extended by Toddo found nontrivial ~ stable to disturbances. Furthermore, they can be used to ex-
integrable wavelike solutions for such systems of couplecamine the properties of the medium they are at. For example,
oscillators. These waves are closely related to the nonlinegbr a system with chromophores, one can imagine exciting a
solitary wave phenomena. Rolfe, Rice, and Dafdzave  chromophore on one side with a strong oscillation, injecting
studied the characters of solitary waves in a periodic chain of soliton, which then propagates undisturbedonly slightly
coupled oscillators. They found both classically and Semi'disturbed towards the other chromophores. The time at

classically that the phenomena is rather general and that a(}\7hich it arrives at the other chromophores can be timed giv-

most any .potent!al with a steep_repulsmn W?” W.'" supporting an indication of the distance between the chromophores.
compression solitary waves. A simple reasoning is based oE ther. th lit ival time i f th i
the fact that by compressing the bond the frequency of local urther, the sofiton arrival ime 1S a gauge ot the properties

oscillation increases, thus increasing the group velocity off the medium in between the chromophores.

the compression wave. The outcome is a wave that creates its 1 NiS paper examines the properties of soliton in 1D sys-
own propagating environment. The signature of this type of€éms on two levels. First, we examine, in a fully correlated
wave is that its group velocity increases with amplitude.model, the stability of the solitons and the dependence of
Once created it moves around the chain with almost no lostheir group velocity on soliton amplitude. Due to the steep
or change of shape. increase in cost of the calculation the study is done for a

The quantum analog of such motion is a subtle issuelimited system siz&8 periodic sites We then study the re-

Strictly speaking the linearity of quantum mechanics meansation of the exact numerical solution describing the quantal
that it cannot support such nonlinear phenomena. Neverthepiiton to approximate models. For this purpose we compare
less it is clear that for short times solitary like waves analo'fully-correlated (CI), time-dependent self-consistent field

gous to their classical counterparts will propagate. Eveml.](TDSCF), and classical simulatior(€ls). In brief, the results

ally these waves will lose their correspondence with the|rare that TDSCF and classical simulations are diffefenthe

classical counterparts when the quantum-classical analo 0 ) L
breaks dowr:® gr}godeb by 10-20%, but give a similar dependence of the

The most common approach of modeling a quantun‘?omon amplitude on initial excitation. Thus, it is feasible to
many-body problem is by employing the mean field approxi_determine soliton motion for large systems by approximate
mation. This approach has been applied to transport of vibramethods.
tional energy in proteins by Davidé$ where the problem The paper is arranged as follows: Section I has the
was cast into a nonlinear Sclinger equation. The approxi- methodology; results are presented in Sec. Ill; and Sec. IV
mation supports solitary wave solution. Solitary solutionsconcludes.
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1. METHODOLOGY The expansion of the wave function is limited numeri-
cally by two simple criteria; finiteness of the expansion in

The system studied is of a periodic 1D vibrational Iattlceeach dimension

(Toda Iattice) with the Hamiltoniarf,
p? N 0=<N;<Npax: (2.10

H= 2 +E 0 (X 4+1-%)), 2.9
and an energy criteria
where we introduced the atomic positions momenta, the
(identica) atomic mass, and the one-body vibrational poten-  Hp.n<Epax (2.11
tial. We assume periodic boundary conditions, so in the po-
tential term thexy ., refers tox,. The potential term has a Wheren,,, andE ., are numerical convergence parameters.

Toda(Morse form 261011 The locally based expansion can pose a problem since
the soliton is nonsymmetric with a different frontalushing
v(u)=Do| e~ (ufro)/oo+u_l , (2.2  and backward(pulling) profile. Therefore, after a soliton
o passes a component of the vibrational lattice, the lattice point
wherer, is the equilibrium distancey is the distance be- aré expected to be translationally shifted even though they
tween the particles, and, is the range of the potential. start and end with zero momentum. This is similar to a

The Hamiltonian was studied with three approaches. Mechanism whereby a falling cat does a rotational shift and
ends up on its feet. The difficulty is caused by the finite

A. Fully-correlated basis-set approach  (quantum-CI ) basis-set representation of the wave function which is not
In this approach the full time_dependent wave function istranslationally invariant, i.e., the quallty of the basis set ex-
expanded in the vibrational coordinate pansion degrades when one adds a large shift to the coordi-
nates. The basis set is optimized for vibrations around the
\p(xit)zz an(t)¢n1(X1)"‘ ¢nN(XN) (2.3 equilibrium particle points. In the present simulation this

problem is overcome by employing a pair of counterpropa-
gating solitons, so any vibrational shift of the coordinates by
a passing soliton is negated at later times by the other soli-
X=X1,X, -+ XN ton. Although the Hamiltonian seems simpler in bond coor-
2.4 dinates it is more difficult to impose the constraint that

2;u;=0 (periodic condition i.e., the sum of bond-
and we introduced the one-body basis functions, which ar@oordlnates is zer@modulus the ring length For this reason
constructed as eigenstates of a zeroth-order noninteractinomic positions were used.

where

n=ny,N,, ... Ny,

Hamiltonian, There are two possible approaches to define the initial
2 wave function¥,. In the first, it is determined as a coherent
0¢J(x )= +v0(x )) ?i(X)) = €;d;(X)), (2.5  state with a specific position and momentum in each dimen-

sion, as follows: We choose classical initial coordinatgs,
and where we introduced the one body vibrational potentiato that the bonds, defined as
vo(Xj) = (x/2) (xj—ro)2 associated with the zeroth-order

Hamiltonian and associated eigenvalues. Uj=Xj4+1—Xj,
The Hamiltonian becomes a simple sparse matrix in this
vibrational representation. The diagonal element is UN=X1— XN » (2.12
E <¢n | |¢n >+E Un s (2.6)  are essentially distributed as a Gaussian compression wave,
_ (j—jo)?
where uj=—u ex;{ - % + const. (2.13
Uk 1 mn={bx®1|v(Xj+1= X)) | dmen)- 2.7

The only nonzero off-diagonal elements are nearesfhe constant is determined from the requirement tha;
neighbor ones. Specifically givenEqg. (2.4), andk the same =0, and the width of the compression wave is typicaily

asn except fork;#n;, then =v2. The magnitude of the compression wave is determined
by u andj, is the atom at the center of the initial compres-
<¢k| |¢) + j sion wave.
i'2m ” n—kg oy kg The classical initial positiofand vanishing initial mo-
(2.8)  mentum determine the initial coherent state in each dimen-
The second case is fér #n; andk;.;#n; then sion. For each atom we then determine a coherent state
¢j(X) based on the initiak;, and determine its coefficient
Hi:n= k ki 2.9
j+1N N hoq
max
Gifie. i+1=
where these expressions are cyclicjifi.e., j+1=1 when =c D bjnbn(X)) (2.14

j=N, etc).
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where the general coherent stdfer generalv,) is by, where the time-dependent individual functions are deter-
=(¢pnlexp(=ipX)|¢p). In this example we chose, to be  mined from
harmonic, so theb,, are harmonic oscillator eigenstates with

the associated analytic expression bgy. The total initial iﬁa_gj:h.g,’ (2.20
wave function is finally determined ¥s* 7
with the local mean field Hamiltonian,
an:H bjnj' (215) 2
-=—+f v(Xj 1= X)|£(Xj 1) |2dx;

The second approach for initiating the dynamics aims to I 2m e A e i
physically mimic the way that a soliton is created. The initial
step is to relax the chain. This is done with an imaginary- +f v (X=X - 1) £(x))]?dx; 1. (2.21
time propagatiorii.e., acting with exp{H7)] with 7 suffi-
ciently large, using a standard Chebychev propagafidi: This equation is solved also by expandifjginto a sum

ter that, a force is applied for a short time on one atom. Inover vibrational eigenstates with standard Runge—Kutta
practice, one adds to the Hamiltonian a terrfi(t)x;, where  time-propagation. The initial wave function is the same as in
f is the force(of constant magnitudé, up to timet;, and the full-Cl approach, and the average position and momen-
zero afterwardsand x; is the coordinate of the first atom tum as a function of time are trivially determined from
(where the pushing is appligdThis term gives rise, in the {j(x;,t).

basis-set picture, to the following addition i

Hk;n_>Hk;n_ f(t)<¢kl|xll ¢nl>Hj = 2Nﬁkl—nj-

The two choices of the initial wave packet have their Classical simulati by i ina the Hamil
pros and cons. The initial coherent state is intimately analo- assical simu ations are run by mtegratlng_t e Hamilton
guations of motion generated from the Hamilton{@rt).

gous to a classical description; however, the second choicg - o _ S —
of a relaxed initial state, leads to damping of contributions he initial conditions are given bfgiassica; (t=0)=X; .
which are unrelated to the soliton, thereby allowing a cleaner
soliton.

With either of the choices to start the dynamics, the ini-
tial wave function is then propagated forward(hea) time 1
using the Chebychev propagatidmwith the sparse Hamil-
tonian.

The average one-body positiéend analogously the mo-
mentun) are then plotted as a function of time,

C. Classical simulations

<Xj>E<\PO|Xj|\PO>:§> Xjik; .niPiing kg (2.1
17
where
Pj,kj N,
:nl,nz,...,njg,nﬁl ..... nn a::l n2 M1 Mggs NN
Xa“lynzy--w”j—lynv”jﬂ ----- NN’ (2.17
Xi;kj,nj:f ¢§j(xj)xj¢nj(xj)dxj- (2.18

B. Time dependent self-consistent field
approximation (quantum-TDSCF )

Self consistent mean field approximations are common
in many body problems. In a time dependent framework for
multimode molecular systems the method is well
developed*!® For the system of coupled oscillators the as-
sociated equations are

FIG. 1. (Color) Schematic model of the lattice and the bond displacement as
a function of time. In the sterioscopic projection the compression regions are
shown as ridges. Two compression waves are produced starting from par-
V(x,t)= H gi(xi 1), (2.19 ticle 1 (u=1). The plot is produced by interpolating the value of the am-

j plitudes on each bond.
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FIG. 2. (Color) Comparing the com-
pression wave propagation on a peri-
odic structure composed of eight
particles for the different initial condi-
tions for the quantum-Cl calculation.
The left panels show the classical-like
initial conditions. The right panels
show the impulsive initial conditions.
The group velocity of the initial state
with u;=0.5 wasv4=1.15 foru; =1,
vg=1.12 and foru; =2, vy=1.3.

Ill. RESULTS vive at least 10 revolutions, but their amplitude seems to

. . . - decrease, indicating that the solitary character is degraded.
Th(_a first set of simulations was on a small periodic sys- The compression wave generated by the impulsive initial

tem, withN=8 atoms. The parameters used were condition is more robust. The solitary-like wave survives for
h=1, m=1, Dy=1, 0p=1, ry=0.5, «=1, a longer period than the one generated from the classical

. . . initial conditions. Figure 3 shows a longer time propagation
wherer is immaterial for the true fully-correlated dynamics | — . ) .
for u=2. The compression waves show a partial revival pat-

and just shifts the equilibrium bond distance. ) i
For this system a converged quantum calculation is post-ern e_lfter 80 Flme units. . .
Figure 4 is a comparison of the bond displacement for

sible therefore it serves as benchmark for the TDSCF anﬁ1e full CI calculation the approximated TDSCF, and the

class!cal approximations. L classical calculation Cls. The TDSCF equations are nonlin-
Figure 1 shows a schematic view of the system and the

bond displacements as a function of time. The calculation
presents the quantum-ClI results where the bond distance in
the wave function is defined as in E@.12),

uj=(Xj+1) = (X))

The wave is initiated by compressing bond 1. It then
propagates simultaneously to both sides of the chain. At time
t=4 the compression wave collides at bond 4. The waves
survive the collision and the two compression waves proceed -
on until the next collision. ’

Figure 2 compares the propagating waves initiated by
two set of initial preparations for three initial conditions for
the displacemenyy=0.5, 1, 2. The group velocity increases
with amplitude which is in accordance with their solitary
character. The two waves propagate and wrap around due KG. 3. (Color) Quantum-CI calculation for longer propagation time with
the periodic boundary conditions. The waves are seen to Suetassical-like initial conditions showing recursionld € 2).

i e
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FIG. 4. (Color) Comparing the com-
pression wave propagation on a peri-
odic structure composed of eight
bonds for the same initial conditions
for the quantum-Cl calculation,
quantum-TDSCF calculation, and the
classical calculation-Cls. The initial

displacement isU=0.5. The right
panel shows a stereoscopic projection

a0 and the left panel shows a colored
contour map. The blue color indicates
- " R
T l' ’Ill! “ I.‘I,. ‘

regions of compression.
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ear, so it is not surprising that the soliton survives for indefi-accompanied by regular, slower waves. This is much more
nitely many oscillations. The soliton survives intact the peri-evident in Fig. 5, which shows the TDSCF results for a much
odic collisions with the opposite solitary wave. larger chain(with 64 atom$ where the slow wave which
‘The results of Figs. 2 and 3 are quantified in Fig. 7,accompanies each soliton is clear. The speed of that wave
Whlch shpws that the V(_alocny of the Wav@stlma_lted from  4oes not increase with soliton speed.
:_he t'T?t It takest tze soliton to re-encountisra rising func- The classical and the TDSCF results are similar but not
1on OTIts amplitude. . identical(cf. Figs. 5 and & The TDSCF wave is more robust
The TD.SCF and the fully-correlated results are 5|'m|I.ar atand has a slower group velocity. We have also studied the
very short-times, as expected. Later, the group velocity in the . . .
TDSCEF is slower than the fully-correlated approach. A pos-SOIIton be_h avior as a function of the quantum nature of the
sible reason for the difference in group velocity is that theProPlem. i.e., off. Figure 7 shows the velocity-amplitude
TDSCF approximation is coordinate dependent. The optimai€'ation for both TDSCF with several valuesfofl and 2 as
coordinates for the mean field TDSCF are those which mini\ell as the classical results. Interestingly, the TDSCF results
mize the correlation, i.e., the normal coordinates of the chaiflo not match the classical results even in the limit sinall.
a choice adopted by Dancz and RicEhe classical-like local For the normal coordinate TDSCF, Dancz and Riaere
atomic coordinates are not optimal for describing the motionable to map the quantum TDSCF propagation to a classical
Interestingly, there is another hint of soliton behavior inone with softer scaled parameters. This is in agreement with

the full-Cl study of Fig. 4, as the primary soliton wave is the slower group velocity found in the present TDSCF.
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FIG. 5. (Color) TDSCF compression
wave for 64 particles fou=0.5 top
and u=1 middle andu=2 bottom.
The increase in group velocity with
amplitude is apparent. An accompany-
ing acoustical wave is clearly seen for
theu=2 case.
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It is also found that the full-Cl result is faster than the ertheless based on the current calculations it seems that a
classical and TDSCF result. compact compression wave would propagate at least 100

Figure 8 is analogous to Fig. 4, but for a higher value ofbonds and may show revival of amplitude further down the
f(2). Two interesting points are first that the soliton seems tahain.
survive longer for the more quantum cade<(2); this may Next, TDSCF, classical and fully-correlated results
be a result of the fewer quantum states that the soliton caghowed similar trends in the speed-amplitude relations, and
break up into. Another interesting aspect is that the solitoRne |ocally based TDSCF shows a slower group velocity of
seems to regenerate itself a long-time after breaking up. Thighe compression wave. This suggests that locally based mean

phenomena was persistent in all convergence tests. It coulghq approximationsare not good enough models for quan-
be analogous to another regeneration phenomena in quantymy, dynamics

dynamics, partial regeneration of quantum wave packets. These results can be extended in several directions. First,

the nonlinear speed-amplitude relation makes it possible to
IV. DISCUSSION imagine applications whereby a chirped pulse on, e.g., a

In this work we studied the properties of quantum soli-chromophore, is used to launch a soliton in which the exci-
tons in vibrational systems. Several interesting aspectttion reaches a specific atom by a shock-wave mechanism
emerged: (i.e., all the excitation would reach a specific atom in tan-

First, solitary-like compression waves were shown todem. Thus, soliton-based cleavage can be imagined.
persist for many collisions in a vibrational systems coupled A second possible application is towards planning algo-
by anharmonic force fields. Due to the exponential growth infithms whereby one seeks to study, e.g., distances between
computation time the study was limited to a small chain inchromophores. By launching a wave packet from one site,
the quantum regime with effective low mass or highNev-  and timing its arrival at another sitat which point the other
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FIG. 7. (Color) Amplitude vs group velocity for the classical and TDSCF
compression wave propagation with different valuesioBlack classical,
blue TDSCFr =2, green TDSCH. =1, pink TDSCF#=0.5.

FIG. 8. (Color Full Cl compression wave with effective=2 for nine
particles.
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FIG. 6. (Color Classical compression
wave for 64 particles fou=0.5 top
andu=1 bottom. The main compres-
sion waves are followed by weaker
acoustical waves with constant group
velocity.

10 qme

chromophore can, e.g., increase its oscillgtidthe distance
between the chromophores can be studied, as well as the
elastic properties of the material in-between.
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