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Intermolecular Hamiltonian for solute—solvent |, clusters and application
to the (1]1) isomer of anthracene—He

Peter M. Felker® and Daniel Neuhauser
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

(Received 9 June 2003; accepted 20 June 2003

Intermolecular kinetic-energy operators are derived the rigid monomer approximatiorfor
solute—solvent clusters of the type B—A where B is a molecule and A is either an atom or a
molecule. The operators are obtained for a body-fixed frame embedded in the B moiety and parallel
to the principal axes of that species. They are expressed in terms of intermolecular coordinates that
represent the projection along the body-fixed axes of position vectors pointing from the center of
mass of B to the centers of mass of the A species. The results are particularly useful for calculations
on clusters in which A—B interactions dominate over A—A interactions in the intermolecular
potential energy surface and/or there is minimal interaction between subsets of the A moieties. This
utility is demonstrated in variational calculations of intermolecular states in1ii¢ isomer of
anthracene—He © 2003 American Institute of Physic§DOI: 10.1063/1.1599831

I. INTRODUCTION atom. In particular, we derive that operator in terms of the 3
. . ., .. _intermolecular coordinates that are the components of the
Alarge bo.dy of work exists pertaining to the elulcu'jauon position vectors from the center of mass of B to each of the
Of. the properties of clusters composed of rrlolelttlﬁé ) A moieties, such components being measured with respect to
microsolvated by atoms or small molecul€#\’ ).* Such . . )
studies are valuable for the information that they can providéi qu y-flxed(BF) axis Sys.te”? embedded in B, Thereby, we
. . __Obtain for arbitraryn the kinetic-energy operator in terms of
on intermolecular forces, solvent structure and dynamlcsé dinates that ticularl ful when A—B int :
photodissociation dynamics, and finite-size effects on chemizoordihates that are particuiarly usetul-when interac
cal processes, on electronic and nuclear excitations, and &Qns dominate over A—A interactions. . .
order-disorder phase transitions, to name but several areas of A secon.d chus of the present work pertains to the inter-
interest. This literature is rich in both experimentatima- ~ Melecular kinetic-energy operator of BrAlusters when A
rily spectroscopicand theoretical/computational studies. In- IS @ molecule. Specifically, we show that a generalization of
deed, the nature of the species as rather weakly interactifg€ A=atom kinetic-energy operator to the=Anolecule
many-body systems in which large-amplitude nuclear mo<ase IS st.ralghtforward.Agaln, the resulting opgrator depends
tions are prevalent often demands close coupling betwee®! coordlngtes that one would expect to faC|I|t§1te the .solu-
experiment and simulation for significant progress to pdion of the intermolecular problem when A-B interactions
made. In this regard, the simulation of nuclear dynamics arisdominate over A—A ones.
ing from intermolecular motions within the cluster can be  Finally, in specific application of the above-mentioned
particularly valuable in shedding light on cluster properties.results for A=atom we report calculations of the low-energy
Such simulations have been performed by clasgical,intermolecular level-structure of thél|1) isomer of the
semiclassicaf;* and quantal(e.g., Refs. 5-18 methods. anthracene—Hecluster (the isomer in which the He atoms
However, most dynamically exact quantal simulations di-are bound to opposite sides of the anthracene plaDer
rectly germane to characterization of intermolecular levelinterest in the species is threefold. First, it is relevant to
structures have been limited to one-to-one complexes of thgpectroscopic results obtained on anthraceng—¢lester
type B—A(e.g., Refs. 5-9, 11, 12, 15, though see Refs. 1deams:® And, our results complement calculations reported
and 13 for examples of such calculations for1). In large  elsewher&' on the (20) (same-sidedisomer of the cluster.
part this size limitation has been imposed by the lack ofSecond, th€1|1) isomer is a good example of the significant
necessary computing power. With such power continuing teffect that kinetic-energy coupling terms can have on the
increase steadily, though, studies of larger systems are batermolecular states of BAclusters. Notably, such terms
coming much more feasible. are neglected under the approximation that the B moiety is
Our aim in this work is to help facilitate the application fixed in space(infinitely massive. Last, the species is an
of dynamically exactwithin the rigid-monomer approxima- excellent model case illustrating how the cost of intermo-
tion) intermolecular level-structure calculations to B;A lecular level-structure calculations on BrApecies can be
species withn=2. Our first main focus is on the intermo- reduced significantly with little loss of accuracy in situations
lecular kinetic-energy operator for such species when A is awhere some or all A—A pairwise interactions are small.
The paper is organized as follows. In Sec. Il we derive
dAuthor to whom correspondence should be addressed; electronic mait.he intermolecular vibrational(=0) kinetic-energy operator
felker@chem.ucla.edu for B—A,, where A is an atom. Section Il pertains to the
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analogous derivation for the case where A is a molecule. In 1

Section IV we outline the procedure employed for the calcu- T'= 2—2 pi2+ — 2 Pi - P (6)
lation of the intermolecular states of tH&|1) isomer of Ki=1 Mg k>1=1

anthracene—Heand of the anthracene—He complex. Sectionwhere u=mymg/(m+mg). Finally,

V then presents the results of the intermolecular calculations. N N

A main focus of this section is on the great utility of consid- E 2 . E @)
ering the (11) states in terms of zeroth-order states con- Z,u, k
structed from products of anthracene—He eigenstates. Sec- ) ) )
tion VI concludes. Equation(7) is converted into a quantal operator by a
trivial Podolsky transformatioff yielding
1 n 1 n ’jz
Il. KINETIC-ENERGY OPERATOR FOR B-A , T= 2_2 S z R 2_“ )

CLUSTERS WHEN A IS AN ATOM

We consider a cluster of the form BnAvhere B is a Where
molecule and A is an atom. To obtain the intermolecular 9 a9 9
kinetic-energy operator for the species we proceed by obtain- P i\~ ==
) . . X' aY;' dZ;
ing a classical expression for that energy and then convert
that to a quantal operator by using the Podolskyand (X;,Y;,Z;) are the Cartesian componentsdpineasured
transformatiorf’ The classical kinetic energil,, of such a  with respect to a space-fixed axis system. Equat®ras it
species minus that associated with translation of its center aftands is not particularly useful since expression of the po-

mass is given b%} tential energy of the cluster in terms of the spaced-fixed com-
1 ponents of thed; is very inconvenient. Therefore, we re-
2T=mgiZ+m, >, i2+ >, I_ji’ (1) express T in terms of BF components of thed;
i=1 o

=(¥;,Yi,z). As BF frame we choose an axis system cen-
where the labels= 1..n refer to the A moietiesmn, andmg ~ tered at the center of mass of the cluster with axes parallel to

are the masses Of A and B' respective'y, Ihare the posi_ the prinCipa| axes of B. In terms of these Coordinates(ﬂﬂ.
tion vectors of the A species with respect to the center opecomes
mass of the clusterg is the position vector of B's center of 10 L j
mass with respect to that of the cluster, the dbesre and T=— _2 VZ- _2 V-Vt =5, (9)
below) denote time differentiation of vector components B k>
measured with respect to a space-fixed axis system with Or(/vh
ere
gin at the cluster center of mass, the indexuns over the
three principal axis directions of B, thi, are the compo- [ 9 9
nents of the angular momentum of B about its center of mass "™ | yx.* gy.* 9z,

measured with respect to its principal-axis system, andl the _ ) )
are the principal moments of inertia of B. Definiig such ~ @nd where we have made use of the rotational invariance of

that vZandV;- V.
n We have one remaining issue to addresd jras given
2T =mgi3+ ma>, P2 (2) by Eg.(9). That is, we seek expressions for the, the
= operators corresponding to the rotational angular momentum
and the internal coordinates of B about its center of mass, as measured along the BF axes.

We start by noting that
di=ri—rg; i=12,.n, ©)]
which represent the vectors from the center of mass of B to
each of the A moieties, it is straightforward to show that  \whereJ,, is the operator corresponding to the total angular

_ m )2 momentum of the cluster measured along ke principal
2T’=mA< E d,z) - VA(E di> . 4 axis of B, andl, is the operator corresponding to the total
=1 =1 orbital angular momenta of the atoms and B about the
The momenta conjugate to thk (denotedp;) can be ob- cluster center of mass measured alongdtieprincipal axis
tained by taking derivatives of with respect to thed, .?*  of B. We can find thd , by starting with the classical orbital
Since thej, andl , are independent of the, this is equiva- angular momentum vector

]\a:"ja_lai (10)

lent to finding the analogous derivativesf. From Eq.(4) n
one finds l=mgrgXfg+myY, IiXf:, (1)
=1
pi=mAdi— VAkZl dk. (5 where, again, the dot denotes time differentiation of vector

components measured along the space-fixed axes. By invert-
With Eg. (5) and a little algebra Eq4) becomes ing Eq. (3) and using Eq(5), one can show that
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n cant error into a level-structure calculation and that the mag-
|= 2 diXp;. (12 nitude of that error will increase witln, /mg. Second, when
=1 n=1 Eq.(17b becomes
Given Eq.(12), the expression for the space-fixed compo-

. ) ) A v2 72
nents ofl in terms of the X;,Y;,Z;) is easily found to be F=- —1+E ﬂ, (19
n n 2u T 21,
TSF_ NP = 1SF
! _2‘1 o <P ,21 i (13 which is identical to the kinetic-energy operator that has

been used extensively in level-structure calculations of

where aromatic-rare gas complex€&°In the light of Eq.(19), it is
“sE Ja 4 clear thaﬁ'v of Eq. (17b consists of two types of terms.
7= —1(Xi,Yi,Z) X X" aY; azZ;|" (14) One, corresponding to the first summation on the right hand

. ) ) side (rhs) of the equation, is a sum of kinetic-energy opera-
It is straightforward to shoif starting from Eq(14) that the tors, each identical to that for a single atom interacting with

BF componentsi.e., components along the principal axes of g The other term, corresponding to the second summation

B) of thel; are given by on the rhs of the equation, constitutes pairwise kinetic cou-
A 0 9 9 plings between atoms that arise due to the translation and
1PF=—i(xi,yi,z) X —,—,—). (15)  rotation of B.

IXi i 0z Finally, and most important, it is useful to examine the

Summing oveii and using Eq(10), Eq. (9) becomes implications of Eq.(17b) in cases where there are twor

Lo L0 more groups of A a}toms distinguished by lack of appre-
f=— =S v2- =S wy.y ciable A—A interactions between atoms of the different
2uE T m, K groups. For example, consider the case of a rare-gas-solvated
. -, aromatic in whichm atoms are localized on one side of the
>y (Joa=Zili0) (16) aromatic,n—m atoms are localized on the opposite side, and
- 20, ' there is no appreciable pairwise interaction between the at-

_ . ) ) ) oms of these two types. The intermolecular potential energy
with the l; , given by Eq.(15) (the superscript “BF” being  function can then be written as

dropped for clarity. Finally, we separat& into a rotationless

(J=0) part and a rotation—vibratiod ¢ 0) part V(dy...dy)=0v™(d;...dn) Fo " ™ (dpsq...dy), (20)
?:?v”ﬁrrv' (17a and the fullJ=0 intermolecular Hamiltonian can be ex-
pressed as
where
1 N =Rm £ (n-m)
?UEEnl _V_{’Z+E 2. A, =AM (d; ...d) + AP ™ (s 1...dp)
1| 2 T 2, . . -
. Vi-V, i ol +i21 k:%H _m_Vi'Vk-i_2 I’lll . ' o
+ z i k+2 i,a k,a} (17b) 8 = .
k>i=1 mB a Ia
where
and
2-23,50 i . U
R (J2-23,= 40, ) A g=S |- Vi, s lia
TrUEE o i R . (179 o (G m) 21 21 Ea: 21,
; : i V-V, T
To obtain Eq.(170 we have used the fact that all compo- n i k+2 ik a}
nents ofJ commute with all thd; ,,. This is a direct result of kSTl msg < |,
J being the generator of rotations of the whole clutére L o™(d, . d,), 22

BF components of the; are unaffected by.
Equation(17b) is one of the main results of this paper. It and an expression analogous to E2R) applies toﬁﬁ”’m).
is pertinent to examine it in some detail. First, one notes thathe important point, evident by a consideration of E2R)
the case of a cluster in which the B moiety is fixed in spacen the light of Eq.(17b), is thath{™ is identical to the inter-
is recovered in the limit whereng and thel,, approach in-  molecular Hamiltonian for the case of a cluster composed of

finity, in which case m atoms A on one side of B and, similarlg{""™ is the
nooy2 same as the Hamiltonian for—m atoms on one side of B.
T,= —2 ﬁ (18)  An obvious strategy for solving then2dimensional Schro
=1 A

dinger equation in which Eq(21) is the Hamiltonian is
Comparison of Eq(18) and Eq.(17b) indicates that the as- therefore to solve first ther8- and 3f—m)-dimensional
sumption of a rigidly fixed B moiety can introduce signifi- Schralinger equations involvind{™ and h{""™ , respec-
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tively, and then use those solutiong{{” and 4" ™, re-  the cluster and the total orbital angular momentum of the
spectively in a product basis to diagonalize the kinetic cou-individual moieties’ centers of mass about the cluster center
plings remaining inﬂv. It is clear from Eq.(21) that the of mass, respectively, and Whe}ga is the operator corre-
kinetic-coupling matrix elements in such a product basis arsponding to the component of the rotational angular momen-
all factorizable into products of the formiy{™|8|y{")  tum of theith A moiety about its center of mass as measured
(A"~ ™6 |1,//(” ™) whered andd’ are operators depen- along a. Analogously to Eqs(17) one obtains a vibrational
dent on one or two coordinates. Thus, their evaluation i$J=0) and arovibrational kinetic-energy operator given, re-
considerably more tractable than if such factorization werePectively, by

not possible. Notably, even if Eq20) is approximate and n 2 A P 22
. . . . ,\ V (l +j‘ ) Jl,a-
there is some small interaction between the different groups E E ha o +2 '
of atoms, this approach to diagonalizilﬁg can be imple- = @ 2l, a 2l
mented with the interaction terms handled perturbatively. In- h A - N -
deed, we implement such an approach in Sec. VB in appli- n _ Vi % +> (Tiatiie) (I at k)
cation to anthracene—HKe K>T=1 Mg @ l o
(26a
Il. KINETIC-ENERGY OPERATOR FOR B-A , and
CLUSTERS WHEN A IS A MOLECULE L
. . . ~ [Ji_ZJazi(lia+jia)]
The extension of the approach of the preceding section T,,=, : —. (26b)

a

to the case where A is a molecule is straightforward. One “« 2l
starts again with the classical kinetic energy apart from overy, gqs.(26) the i, . are given by Eq(15). Thej; , and]; «

all translation, which is given by can be expressed in terms of the Euler angigs €, , xi) that
m Ma n 2 describe the orientation of theh A moiety with respect to
B. 2 &
5 Ta+ —E P +E +Z 2 21| (23)  the cluster BF axegFor example, see Eq€3.9) of Ref. 12
' for the Ji.« and Egs.(3.10 of the same reference for the
where symbols common to E@l) are defined as for that j; o]

equation except that; now refers to the vector from the Equation(26a), the analog to Eq(17b) for molecular A
cluster center of mass to the center of mass ofitheA  jeties, is the second main result of this paper. Since we
moiety, and wherey; is an index that runs over the three ge it no further herein, we shall not give it the same scrutiny
principal-axis directions of thith A moiety, j;. o is the com- as was applied tG’U for the A= atom case. Nonetheless, we
ponent of rotational angular momentum of thté moiety o note that it behaves as it should for B fixed in space
about its center of mass as measured alongytprincipal (infinite my and1,) and that it reduces to the correct form
axis, andl , o is the moment of inertia of that moiety along for n=1 [compare with Eq(3.12 of Ref. 12. We also note
that axis. It is clear that a development analogous to thathat its structure implies that it should be possible to obtain
leading from Eqs(1)—(9) can be applied to Eq23). Thatis, the analog of Eq(21) for clusters composed of different

if one defines internal coordinatels analogously to Eq(3),  groups of A species distinguished by the lack of A—A inter-

T=-2

then one ultimately obtains group interactions. We shall take up this point elsewhere in a
1 1 32 study of benzene—(}Y,.
A~ 2 o
T 2,LL EI V| Mg k2>| V| Vk ; 2| N
n Ao IV. INTERMOLECULAR LEVEL-STRUCTURE
Z E li, @ (24) CALCULATIONS ON THE ANTHRACENE- (4HELIUM)2
=i (1]1) ISOMER
i a;
where To illustrate the application of the results of Sec. Il we
0 s s have performed filter diagonalizatidfDG)?>~**variational
ViE(_1 —, _) calculations of the intermolecular level structure of tthg)
X dY; JZ isomer of anthracenéHe,. We have also performed such

depends on the componentscbfmeasured with respect to a calculations of the anthracene—He complex’s intermolecular
BF axis system para||e| to the principa] axes of B. As with states, since considerable InS|ght into the results onnthe

the A=atom case, though, we seek to eliminate the To iz species can be gained by detalled knowledge ofrthe
do this we substitute into E424) =1 species’ level structure. This Section outlines the proce-

) dures pertaining to these calculations.
[ ) S (25)  A. Symmetry considerations, body-fixed axes
i=1""

. . Under the assumption that He movement from one side
where, as in Eq(10), J,, andi, are operators corresponding of the aromatic plane to the other is “unfeasiblé>the mo-
to the components along of the total angular momentum of lecular symmetry group of the anthracene—kH1) isomer
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TABLE I. Gg character table for anthracene—Hg|1).

Class: cL1 cL2 cL3 CL4 cL5 CL6 cL7 cL8

equivalent rotation R R7 RT Ry RT RO Ry R7

A; 1 1 1 1 1 1 1 1 t—2,)"°

A, 1 1 -1 -1 1 1 -1 -1 R,

B, 1 -1 1 -1 1 -1 1 -1 (X1 +%)s Ty Dot

B, 1 -1 -1 1 1 -1 -1 1 Wity2), T,

Al 1 1 1 1 -1 -1 -1 -1 (2,+2,), T,

A 1 1 -1 -1 -1 -1 1 1

B 1 -1 1 -1 -1 1 -1 1 %), Ry

B 1 -1 -1 1 -1 1 1 -1 (Y1—V2), Ry Tior

@The classes are as follows: CEE. CL2=(3,8)(4,9)(5,10)(6,11)(7,12). Cl=3(3,8)(4,7)(5,6)(9,12)(10,11) CL4=(4,12)(5,11)(6,10)(7,9). CL5
=(1,2)*. CL6=CL2(1,2)*. CL7=CL3(1,2)*. CL8=CL4(1,2)*. Numbers 1 and 2 refer to the helium atoms. Numbers 3-12 refer to hydrogens on
anthracene. Numbering begins with the central H on the bottom of the ring and proceeds sequentially counterclockwise around the ring.

PBF axes are defined as follow&:is parallel to the vector that points from hydrogen No. 3 to Noz & parallel to the out-of plane symmetry axis of
anthracene and always points to the side of the ring plane that He No. 1§scompletes a right-handed coordinate syst&randR; refer, respectively,

to translation along and rotation about BF akix,,y,,...,Z,, etc. are the coordinates of the He atoms in the BF frésae text I',, denotes the irreps that

the full (1]1) wavefunction must transform as.

is Gg (isomorphic with theD,;, point group. The character any one of the eight irreps @g. Similarly, the symmetry of
table of Gg applicable to this species is given in TabléThe  the full wavefunction of anthracene—He must transform as
structure and notation of the character table matches that &, or B,, and its rotational and nuclear-spin states transform
Ref. 25) In the table the permutation—inversion operationsasA;, A,, B;, orB,. Hence, thel=0 intermolecular states
comprising the group are denoted by feasible permutationsf the complex can transform as any one of Ggirreps.
of equivalent helium and hydrogen nuclgiith parallel in-
terchange of C atoms implied but, for clarity, not explicitly
denoted. To represent permutation—inversion operations weB. Basis sets
label the helium nuclgi as “1"and “2.” The hydrqgen Quclei For the anthracene—kespecies a primitive basis set
are labeled sequentially from “3" to “12” starting with @ comprised of products of six one-dimensional discrete-
nucleus along the short in-plane axis of the anthracene mojariaple representatioi®VRS), each associated with one of
gty and proceding counterclockwise around the anthracen@,exl’ V1, Z1, X2, Y2, Z, BF coordinategsee Sec. )i was
ring.

The molecular symmetry group of the anthracene—Heused
complex(for unfeasible crossing of the He from one side of la,b,c,d,e, =X MY1p)|Z1 )Xo d) V2o Z2g).  (27)
the anthracene to the othds the G, subgroup ofGg (iso- 7 T ' o
morphic with theC,,). The character table for this group is NOte that the position of an index on the left side of Ezy)
given by the upper left quadrant of ti@; character table of has meaning: From the left the first position corresponds to
Table 1. In labeling the irreducible representatigineeps of e X1 DVR, the second to thg/; DVR, etc. The one-
this group we drop the primes associated with @girreps. dimensional DVRs on the rhs of E(R7) are defined, as in

We point out that our labeling of the BF axesee belowand ~Ed- (4.1 of Ref. 12, for example, in terms of one-
of the G, irreps coincides with that used by Heidenreich dimensional harmonic-oscillator eigenfunctior,] and the

et alXin their study of anthracene—He intermolecular statesGaUsS—Hermite quadrature points and weights associated
To apply the results of Sec. Il one requires a BF axiswith those functions. For. example, tig, functions of the
system parallel to the principal axes of the anthracene moietj2"deépendent DVR are given by
with origin at the cluster center of mass. In labeling these
axes we adopt for both species the following conventiois:
taken to be parallel to the vector that points from the center
of mass of anthracene to hydrogen Ndi.8., along the short
in-plane axis of anthracehe is taken parallel to the out-of-
plane principal axis of anthracene and always points to th
side of the ring on which He No. 1 resides, dhdompletes
a right-handed coordinate system. In the notation of Table
the full rovibronic-plus-nuclear spin wave function of the
(11) species ¥°C, H, and“He isotopomer must belong to
either theB; or B} irrep of Gg. Since the part of the wave
function that corresponds to overall rotation of the specie?mple’

Ny—1

|X10)= nZO Wadbn(Xa) bl 1:X1), (289

wherex, is a quadrature pointy, is the weight associated
gvith that point, andy, is chosen to tailor the DVR to the
intermolecular potential-energy surfad®S). The three re-
‘naining DVRs along thex andy axes are defined analo-
gously. Thez;- andz,-dependent DVRs differ slightly from
these in that they each incorporate a second paramatgr (
andz, o, respectivelyto better accomodate the IPS. For ex-

transforms a#\;, A;, BT, or B} and that corresponding to N, 1
nuclear spin transforms a&;, A5, B;, or B;, the J=0 12,0= S \Wodbn(20) bn( vl Zi—210)). (280
intermolecular states for th€l|1) isomer can transform as ' n=0 '
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TABLE II. Basis set and inertial parameters for intermolecular-state calcu-TABLE III. Allowed values of the index &’ for f=—c and|d|=|a|?
lation on anthracene—He and tf®1) isomer of anthracene—He

Irrep € S o d=a d=-a

N,=12 v4=1.296 575 K1 -
N, =14 7,=0.956 544 A * Ay 0 0 0 le[<|b] lef=<]b]
N,=10 y,=2.290 773 K1 2= —2,=33A Az 1 1 0 b<e<|b| b<es<|b|
ma=4.0026 amu mg=178.078 amu By 0 1 0 b<e<|b| b<e<|b|
1,=1088.140 amuA  1,—230.032amu A  1,=1318.173 amu A B, 1 0 0 lef=<|b] el <|b]
Al 0 0 1 le|<|b] le|<|b]
A 1 1 1 b<es<|b| b<e<|b|
B 0 1 1 b<es<|b| b<es<|b|
B 1 0 1 le|<|b] le|=<|b]

In all cases the sizes of the two DVRs corresponding to thég. sec. v B.
same BF axis were taken to be identi@galg.,N, is the same

for the x; and x, DVRSs), as were the ranges of the two

DVRs (as fixed by the relevany values. Table Il gives the

parameters defining the six DVRs used.

For notational convenience we adopt the following con-We impose full symmetrization during the course of the FDG
vention in regard to the labeling of the DVRs. TNefunc-  procedure after the operation Eltj (see Sec. IV For this
tions corresponding to a given DVR are assigned integerfinal symmetrization we require expressions for fully sym-
sequentially starting with the function associated with themetrized basis functions in terms of those of E2f). These
most negative quadrature point and ending with that assocare given by
ated with the most positive quadrature point. For xh@end
y-dependent DVRs we take these integer labels to run from |3 b ¢ d,e f;e,8,0)=|a,b,c,d.e f;e, o) (309
—N/2 to N/2 with zero omitted. Hence, theandb indices
run from —N,/2 toN,/2 (zero omittedlandb ande run from
—N,/2 toN,/2 (zero omittedl. With this convention the point
X_a (=Ex_,lyy), for example, equals—X, (Xa=Xa/7vy)-
Analogous symmetries apply to the quadrature points asso-
ciated with the three othex and y DVRs. For the
z-dependent DVRs, we label the functions from INif the
relevantz, is positive and from—N, to —1 if the z, is +(—1)’|d,e,—f,a,b,—c;€,8)]
negative. Sincez, o is positive andz,,=—127;4, the point (30b)
%t (=20t 2;1y,) associated with théz, ;) DVR (f<0) is

equal to—Z_y, \g/herﬁz hf( 2101217, is the quadrature ¢ o other values of the indices. Here=0 or 1, and the

pOInl'; assoSate wit tbﬁl*o DVfRE basi values ofc, € and 8 completely determine thEg irrep to
rom the primitive basis set o q_m, a basis s_et SYM" " \which the function belongs. For Eq80) the ranges of the

metry adapted to th&, group comprised of the first four indices must be smaller than those that apply to @8) so

classes 0fGg can be easily constructed. The functions a'€3s to eliminate redundancies. Several equivalent ways to

when|a|=|d|, |b|=]|e| andc=—f, and

1
la,b,c,d,e,f;€,6,0)=—[|a,b,c,d,e,f;€,5)
V2

given by eliminate redundancies are possible. We choose the follow-
la,b,c,d,e.f,;e ) ing. In all cases—N,/2<sas<—-1, —N,/2<b<-1, 1s<c
’ <N,, and c<|f|<N, apply. If —f#c, then —N,/2<d
=3lab,c,def)+(-1)(-ab,c,—def) <N,/2 and—N,/2<e<N,/2. I —f=c, then|d|<|a] in all

_1)%a—b,c.d—ef) cases and the allowed values @fdepend on whetheld|
o e =|a| or not. If —f=c and|d|<|a|, then—N,/2<e<N,/2
+(-1)¢"9-a,—b,c,—d,—ef)], (290  inall cases. If-f=c and|d|=|a|, the allowed values of

depend ord, b, €, §ando, information that is summarized in
where e and 6 can take the values 0 or 1. Ti@, transfor-  Table III. Also given in Table IIl are th&g irreps that apply
mation properties of these functions are determined by they the various sets of, 8, ando values. The overall sizes of
values ofe and 6. Sincea and —a refer to functions belong- the fully symmetry-adapted bases, given the parameters in
ing to the same DVR, as dnand—b, dand—d andeand  Table II, are 353 640 functions fa; , 351 960 functions for

—e it is necessary to reduce the sizes of th@eadapted A7, and 352800 functions for each of the other six irreps.

basis sets from the fuN2>< N2>< N2 of the prlmltlve basis to The basis set emp|oyed for calculations on

NZXNZxNZ/4 in order to eliminate redundancies. We do anthracene—He was constructed from three-dimensional

thls by restricting the indicea andb to the ranges-N,/2t0  products ofx;-, y;-, and z;-dependent DVR$as given by

—1 and—N,/2 to —1, respectively. Egs. (28)]. The parameters defining the one-dimensional

The basis functions defined by EQ9) are those that we (1D) DVRs were taken to be the same as those employed in
employ in the wave function propagations central to FDG.the n=2 calculations(see Table . These primitive basis

We do not use a fully symmetry-adapted basis in thesgunctions were symmetry-adapted to the comples mo-

propagations owing to difficulties in programming the opera-lecular symmetry group in a manner analogous to [©§),

tion of I:|U on a fully symmetry-adapted wave vector. Instead,giving rise to the functions
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la,b,c;e,8)=3|a,b,c)+(—1)—a,b,c) D. Filter diagonalization
+(—1)%a,—b,c) FDG was implemented by generating a random initial
wave vector|¢,) in one of the fourG,-adapted basis sets
+(—=1)"%~a,~b,c)], (3)  defined by Table Il and by Eq29) (for n=2) or Eq.(31)

o (for n=1). The initial wave vector was propagated 512 or
where the notation is analogous to that used for €§). 1024 time steps by Chebyshev propagafidWwindow basis
Redundancies were eliminated by restricting the indi@es fynctions filtered at selected energies within a set energy
andb to the ranges-N,/2 to —1 and—N,/2 to —1, respec-  yindow were accumulated after each propagation step by
tively. The size of each symmetry-adapted basis is 420 funcysing Eq.(6) of Ref. 24. Window basis functions obtained in
tions perG, irrep. this fashion are symmetry adapted to the same extent as
| o). Hence, for then=1 species no further manipulation of
the window functions was required to achieve full symmetry
adaptation. However, for the=2 species fully symmetry-
adapted window basis functions had to be calculated from
The(1]1) J=0 Hamiltonianﬂv consisted of the sum of the ones accumulated in the Chebyshev propagation by op-

the '“rv operator given by Eq(17b for n=2 and the erating on the latter with the projection operator
pairwise-additive intermolecular potential energy function

C. Operation with H,

used by Heidenreichkt al#in their calculations of the inter- P.s.= > lab,c,def;ed o)
molecular level structure of the(2|0) isomer of allstates
anthracene—He The values of the inertial parameters ap- X(a,b,c,d,e f;€ 8, 0], (32)

pearing inT, are given in Table I. . . .
v . with the |a,b,c,d,e;fe,8,0) given by Eqs(30). The resultin
FDG requires repeated computation of the effect of c)p'functioné were then reéxgpresseé inq trge ;;—29) basis Fogr
erating with the Hamiltonian on a wave vector. Operation :

_ ) ] both then=1 andn=2 species the completely symmetry-
with  the  potential-energy ~ portion ~ of H,,  a4anted window functions were orthogonalized by the
V(X1,Y1,21,%2,Y2,2,), IS straightforward in the basis em- o o <op ity method. The matrix of the relevahtin this

ployed herein since all the matrix elementsvoare diagonal. . : . . ! .
: ; basis was then diagonalized to yield eigenvectors and eigen-
Further, they are givefto Gaussian-quadrature accurpby - .
values within the chosen energy window.

(a,b,c,d,e ;e 8V|ab,c,d.efe o) In addition to the window-function variant of FDG, a
T e time-correlation-function versiéit?* was also applied. This
=V(Xa,¥b,Zc Xd Ve Zt), was done in order to get information ¢, eigenvalues so

o ) , that the latter could then be used as energy-filter input in
whereX,, ¥y, etc. are defined as in Sec. IV B above. In any, inqow.function FDG. The Chebyshev/correlation-function
given FDG propagatioV was calculated just once over the approach of Eqg12) and(13) in Ref. 24 makes direct use of
entire &,,Yp,Z¢ Xq ,7_8 ,Z¢) grid. The values Were_stored N the Chebyshev coefficients,= (0| X,,), where|X,) is the
memory to be usgdA in the wave vector prgpagatlon. . Chebyshev vector obtained afteioperations of a scaIeIEIU

To operate withl', we computed analytically the matrix |4). The main point we would make here is that it is
elements of that operator in the basis of harmonic oscillatogyaightforward to obtain fully symmetry-factored eigenval-
eigenfunctions isomorphic to the DVRs. These were then,q from this procedure even if the propagated eigenvector is
transformed to the primitive basis of E@Q7) by using Eqs. ot symmetry adapted. This is done as follows. One obtains

(2_8) and their _analogs fo.r the other colordinate:_:,. Finally, ma‘symmetry-factored Cheybshev coefficients- by: (a) sym-
trix elements in the partially symmetrized basis of E2P) metrizing | ,) with a projection operator foF, the irrep of

were constructed as needed from memory-stored p”mltlveihterest: |5r|l//o>5|llfr,o>, and (b) computing cpr

basis rpatrlx elements. Un_llke the potential-energy matrlx,:<lr//F JX.) as the|X,) are generated by the propagation of
that of T, has nonzero off-diagonal elements. As a result, thew/0> Thec - are then used in Eq&L2) and(13) in Ref. 24
— - . . : n, .

computation time foff,|¢4) dominates in the overall compu- 1, otain eigenvalues specific T This works becaus®;
tation of H,| ). Still, for the T, matrix considerable block commutes with the scalefl,, P2=P, and Chebyshev

. . . . . v 1
diagonalization obtains. Indeed, nonzero matrix elements alSropagation amounts to operation on the initial wave vector
diagonal in no less than four of the six indices characterizinqN. L - .

he basis set. Thus. f le, fAg ) calculation scales | ith a polynomial in the scaledal-l_v._ Hence,{yr o X,,) is
the basis seé us, for example, thg) X identical to the Chebyshev coefficient that would be com-
roughly asN® for an equal numberN, of DVRs in each puted if| ¢y o) were propagated instead o).
dimension. :

For the anthracene—He complék, was taken as the N o _
sum of'AI'U, as given by Eq(17b) for n=1, plus the same E. Rigid-body diffusion Monte Carlo calculations
potential-energy  function as used to model the As a partial check on the results of the variational cal-
anthracene—He interaction in thre=2 cluster. Operation culations described above, we have performed rigid-body
with H, was handled in a manner exactly analogous to thatliffusion Monte Carlo calculationdRBDMC9)?’ of the zero-
described above for the=2 species. point energies of anthracene—He and thél|l)
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TABLE IV. Properties of computed intermolecular states for anthracene—He.

G, irrep AE? (2P Az Ax Ay Assignment
Ay

1 0.00 3.33 0.28 0.59 0.75 Zero point

2 13.13 3.34 0.29 0.60 1.87 [2vy)

3 24.64 3.33 0.31 1.62 0.98 [2v,)

4 27.99 3.37 0.30 0.69 2.26 |4vy)

5 37.50 3.35 0.32 1.67 1.79 [2vy,2vy)

6 4155 3.32 0.35 1.74 2.06 [4,); [6vy)

7 42.44 3.34 0.33 1.52 2.33 |4v,); [6vy)

8 49.03 3.74 0.52 0.90 111 [v,)

9 50.33 3.39 0.37 1.70 2.60 [2vy,4vy)
10 54.46 3.39 0.34 1.00 3.39 [8vy)
11 54.57 3.31 0.37 2.10 2.05 |4vx,2vy)
12 60.14 3.65 0.55 1.27 2.35 |v,,2vy)
Ay

1 21.00 3.36 0.30 1.21 1.44 [vy,vy)

2 34.37 3.38 0.30 1.18 2.15 |v4,3vy)

3 38.60 3.27 0.33 2.09 1.42 13y, vy)

4 47.38 3.39 0.32 1.35 2.85 |v4,5my)

5 52.54 3.32 0.34 2.06 2.32 |2vx,3vy)

6 55.18 3.21 0.36 2.38 143 [5vy,vy)

7 58.38 3.34 0.36 1.62 3.44 |VX,7Vy>

8 63.20 3.27 0.38 2.10 3.19 [3vy.,5vy)

9 65.64 3.84 0.55 1.46 1.55 [v,,v¢,vy)
10 68.26 3.27 0.40 1.89 3.47 |3vx,7vy)
By

1 14.61 3.35 0.29 1.15 0.84 [vy)

2 27.49 3.37 0.30 1.18 181 [v4,2vy)

3 33.32 3.28 0.32 2.03 0.97 [3v,)

4 41.16 3.39 0.31 1.25 2.47 [v,,4v,)

5 46.06 3.30 0.33 2.06 1.78 [3vy,2vy)

6 50.10 3.23 0.36 2.35 1.14 |5v,)

7 53.17 3.37 0.34 151 3.11 |v,67y)

8 58.17 3.34 0.39 2.05 2.68 |3vx,4vy)

9 60.58 3.79 0.55 1.46 1.24 [v,,vy)
10 62.85 3.26 0.37 2.36 1.84 |5VX,2vy>
B,

1 7.71 3.35 0.29 0.62 1.48 \vy>

2 20.16 3.35 0.29 0.60 2.04 |3vy)

3 30.41 3.33 0.31 1.70 1.42 [2vy,vy)

4 35.27 3.38 0.30 0.66 2.63 |5vy)

5 44.11 3.37 0.33 1.67 2.26 [2v,,3vy)

6 47.03 3.25 0.35 2.19 1.51 |4v, ,Vy>

7 48.33 3.39 0.33 0.88 3.23 [7vy)

8 55.11 3.71 0.54 1.09 2.06 [v,,vy)

9 55.69 3.42 0.43 1.70 2.79 |2vx,5vy)
10 59.23 3.39 0.35 0.82 3.57 [9vy)

ibrational energy in cm'. Zero-point energy is-90.52 cm* relative to dissociation.
b(2) is the expectation value af,. Ax, Ay, andAz are, respectively, the root-mean-square deviations, of
y;, andz, . All are given in A.

anthracene—Heisomer for the same IPSs and inertial pa- —181.5-0.9 cmi ! for the (1/1) species. They match those
rameters that were employed in the variational studies. Eacbbtained variationall(Sec. \) within the precision of the
such calculation involved 4000 replicas. After 1000 equili-RBDMC calculation.

bration time steps of 50 a.u., energies were averaged over

2000 or 3000 time steps of 5 a.u. The average energies co- COMPUTATIONAL RESULTS

responding to several such runs were then averaged to obta"&n
a final result. The isomeric form of the=2 species was "~
enforced by choice of the initial replicas and by elimination A summary of calculated results pertaining to the inter-
of any replicas undergoing the crossing of an He atom frommolecular states of anthracene—He having energies less than
one side of the anthracene plane to the oteatremely rare  ~60 cm ! above the zero poir(t~30 cmi ! below dissocia-
events, in practice The RBDMC zero-point energies so tion) is presented in Table IV The energies and geometrical
computed are—90.3+0.4cmi ! for anthracene—He and properties of the states differ slightly from those reported in

Anthracene—He
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Ref. 14. There are two reasons for this. First, the basis sefy, ,mv,,nv,); is an eigenvector of anthracene—Her an
employed in this work is different than those of Ref. 14. Theye atom in theith site. For (,m,n)=(I",m’,n’) the func-

effect is a shift to lower energigg.g., about 2 cm' for the  tions of Eq.(33) are already symmetry adapted @g. For
zero-point level for our results. Second, the Hamiltonian (I,m,n)#(I’,m’,n") symmetry adaptation requires con-

employed here does not treat the anthracene moiety as bei@@ructing plus and minus linear combinations of the form
fixed in space, as in Refs. 14. One consequence of account-

ing for anthracene motion is a level-structure shift to higheﬂI v, My nvy il ve,m' vy n',) .
energies that partially cancels the shift due to different basis
sets. Further, some states are shifted to a greater degree than
others. In particular, those states involving, the vibration
of the He along thex (short in-plang axis of anthracene,
have significantly higher energies above the zero-point level
relative to what their energies are computed to be under thghe notation of Eqs(33) and(34), together with the conven-
assumption of fixed-in-space anthracene. This is clearly @on that the omission of a given, denotes zero quanta in
consequence of the fact thatt(N\/ll/.L+<Zzl>/|y28 versus  that mode and that “0” denotes:Q, Ov,, Ov,, is what
vy~ y1/imy, for the two cases, respectively, and the formerappears for assignments in Table V. Thus, for example, the
inertial factor is significantly larger than the latter. Finally, 1B; state is assigned as
the small differences in the expectation values of geometrical
properties between the two sets of results are likely due to o1
the difference in the way that the anthracene moiety is |VY’O>+:E[|Vy>l|0>2+|o>l|vy>2]
handled.

The assignments of anthracene—He intermolecular statéd Which one quantum ofy is shared in-phase between the
presented in Table IV were made on the basis of the comtwo He atoms. Similarly, the B] state is assigned as
puted values ofAx, Ay, andAz, as well as the nodal prop- 1
erties of the cqmputed elggnfunctlons. The notation em- |Vy;o>7§_[|Vy>1|0>2_|0>1|yy>2]
ployed in making the assignments accounts for three v2
intermolecular vibrational modes;,, vy, and v,, corre-
sponding to relative motion of the He and the anthracen
center of mass along thg, §, and z BF axes, with the

coefficient in front ofy; denoting the number of quanta in ) . .
theith mode and with; omitted completely when its coef- anthracene—Heintermolecular states arises because the six-
! dimensional IPS of the former species is the sum of two

ficient is zero. One sees from the Table that the level struct-h di ional t that h th th
ture is built on modes whose<10 fundamentals occur at - 'ccaimensional terms that are eac € same as the
14.61, 7.71, and 49.03 cmh for v, vy, andv,, respec- a_nthrac_ene—l—ie IPS . plus a very much smaller_ Six-
tively. Not unexpectedly, bothy, and », are significantly d|men5|or1al He—He mteractlor] te-rmlz. Therefore, given
anharmonic(Undoubtedly,v, is, as well, though our calcu- EQ- (21), H, for then=2 species is the sum of two=1
lations do not encompass states with two or more quanta iff@miltonians plus/y, plus the kinetic coupling term

v,.) Further, there is considerable coupling between all three 1 1.7
modes. Perhaps the most notable feature of t_he results, re- To,=——V,-V+ >, la 2a (35)
marked upon in Ref. 14, is the marked delocalization of the Mg

He atom parallel to the anthracene plane, delocalization th . ) . A
increases substantially with vibrational excitation. aIIhAe product basis defined 'by EQF’:S) diagonalizesH,

—T4,—V;,. Hence, that basis provides a good representa-
tion of the (1]1) states to the extent thdt,+V,, is small
compared to the rest ¢, .

Table V summarizes calculated=0 intermolecular To investigate quantitative]y tha=1 Composition of
level-structure  results  for the (1|1) isomer of  the(1/1) intermolecular states, and to assess the suitability of
anthracene—(Heg)for states at energies less tha80 cm™*  the approach outlined at the end of Sec. Il for the solution of
above the zero-point level. Also given in the table are seintermolecular Schidinger equations, we have calculated
lected expectation values and state assignments. The notatigip (1]2) states variationally by using the E@®3)/(34) basis.
employed for the assignments reflects the faohsidered in  This was done as follows. The eigenvectors corresponding to
detail below that the(1|1) states are well approximated by the 42n=1 states enumerated in Table IV were used to
zeroth-order states that are products of intermolecular eigerpnstruct product basis functions as per E§8) and (34).

EEHva,mvy,nvz;l’vx,m’vy,n'vz>

i|l’vx,m’vy,n'vz;lVx,mvy,nvx>]. (34

én which one quantum of, is shared out-of-phase between
the He atoms.
The close connection betweél1) anthracene—Heand

[e3 I o

B. Anthracene—He , (1]1) isomer

functions of the anthracene—Heomplex: The 1764 resulting functions divide amongst GBgirreps as

(R A L ?43A1, 201Af1’, arld 220 for each of thg other six. For ea(?h
B ) ) ) irrep the matrix ofH, was constructed in the product basis
=[lvx.mvy,nv,) X[ v, m' vy 0" v5),, (33 under the assumption of negligible off-diagonal, matrix

where the subscripts “1” and “2” refer to the He binding elements. Off-diagonal elements Bf, were taken fully into
sites above and below the anthracene plane, andccount. Finally, the symmetry-factored matrices were diago-
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TABLE V. Properties of computed intermolecular states for (&) isomer of anthracene—kle

Gg irrep AE? (2P Az AXx Ay Assignment
Al
1 0.0 3.33 0.28 0.59 0.76 Zero-point
2 13.13 3.34 0.29 0.59 1.43 |2Vy;0>+
3 15.43 3.35 0.29 0.62 1.48 | vy, vy)
4 24.06 3.33 0.29 1.20 0.86 902,;0) , ; 9% v, ;v
5 26.23 3.35 0.29 0.60 1.87 |2vy;20,)
6 27.78 3.35 0.29 0.62 1.74 44%,;0) . ; 54%|3v,;vy) .
7 28.03 3.35 0.29 0.63 173 52%w,,0) , ; 45%|3vy ;vy) .
8 29.68 3.35 0.29 1.17 0.87 820,;0), ; 87%]|v, ;v,)
AL
1 13.13 3.34 0.29 0.59 1.43 |2vy;0),
2 24.60 3.33 0.30 1.22 0.87 [21,;0) -
3 27.79 3.35 0.29 0.62 1.76 54%,;0) _ ; 84%|3v, ;1)
4 28.07 3.35 0.29 0.63 1.72 848w,;,0)_ ; 54%|3v, ;1)
A,
1 20.43 3.35 0.29 0.93 1.16 1%, v,0) 4 ; 22%| vy ;vy) s
2 22.87 3.35 0.29 0.95 1.19 22%,v,,0)+ ; T7%) vy s
2
1 20.52 3.35 0.29 0.93 1.16 79%,v,,0)_ ; 21%) v vy) -
2 22.72 3.35 0.29 0.95 1.19 21%, 1,00 ; 79%]|v;v,)
B;
1 13.58 3.34 0.29 0.90 0.79 [v,;0) 4
2 26.58 3.35 0.29 0.91 1.42 56%,21,:0) ; ; 43%]v,;21,) ;
3 27.78 3.36 0.29 0.94 1.46 vy vt vy) s
4 28.57 3.35 0.29 0.95 1.42 43%,21,;0) , ; 569 vy;2vy) .
B
1 15.57 3.34 0.29 0.94 0.80 |vx;0>,
2 26.60 3.35 0.29 0.91 1.42 56%, 21,;0)_ ; 449%]| v,;2v,)
3 28.56 3.35 0.29 0.95 1.42 43%,2v,;0)_ ; 55%]|v,;2v,)
4 29.63 3.36 0.29 0.98 1.46 | vy 5 Vs vy>,
B>
1 7.65 3.34 0.28 0.60 1.17 |Vy;0)Jr
2 20.14 3.34 0.29 0.59 1.55 [37y;0)
3 20.77 3.35 0.29 0.61 1.68 |20y i,
4 30.08 3.33 0.30 1.25 1.14 |20, 1,:0)
B3
1 7.78 3.34 0.28 0.60 1.18 |vy;0),
2 20.15 3.34 0.29 0.59 1.55 |2vy;0),
3 20.95 3.35 0.29 0.61 1.69 |2Vy ;vy)_
4 30.11 3.33 0.30 1.26 1.14 |2vx,vy;0>,

3ibrational energy in cm'. Zero-point energy is-181.09 cm* relative to dissociation.
b(2) is the expectation value af,. Ax, Ay, andAz are, respectively, the root-mean-square deviatiorns, of
y;, andz; from their expectation values. All are given in A.

nalized numerically. The differences between energies obbe factored into two three-dimensional integrals, @ndthe
tained by this procedure and those obtained by diagonalizingroduct basis states are excellent zeroth-order approxima-
the full H, in the 6D DVR basigTable \) differ from one  tions of the true eigenstates, so that convergence of lower-
another by only 0.01 ci (root mean squarédObviously,  lying states in a variational calculation can be achieved with
there is excellent agreement between the two sets of result.relatively small basis. Thel|1) species is thus a good case
This agreement clearly points the way to the assignment ah point illustrating that accurate results can be obtained with
the cluster’s intermolecular states in terms of the productonsiderably reduced computational effort by using the gen-
basis states. The assignments given in Table V are based enal approach discussed at the end of Sec. II.

quantitative analysis of the product-basis-state composition In regard to the details of the calculateidil) level struc-

of the intermolecular eigenvectors obtained from the calcuture, one notes the presence of three types of eigenstates.
lation just described(All basis states contributing 8% or First, there are thos€type one”) that are essentially pure
more to an eigenstate are listed in the tgblde agreement zeroth-order states of the E@3)/(34) type with vibrational

is also significant in that the calculation based on theenergies that are almost identical to those of their counterpart
anthracene—Heproduct basis is much less costly than thestates in anthracene—He. Two examples afg 299.7%

full six-dimensional calculation of1|1) states. This is be- |2Vy;o>+) and 1A} (99_9%|2vy;o>7), which are both at
cause:(a) the only off-diagonal elements involved in the 13.13 cni* in the (1/1) species compared with the 13.13
former are those oflz, and each such matrix element can cm™? vibrational energy 0f2vy> in anthracene—He. Second,
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there are also stat€%ype two” ) that are pure Eq.33)/(34)

P. M. Felker and D. Neuhauser

states that have significant admixtures from more than one

states but that have vibrational energies that deviate appreeroth-order state and vibrational energies that deviate from
ciably from those of anthracene—He states. For examplenthracene—He energies. As examples, the product states

1B; is 99.7%|v,;0), but has vibrational energy 1 cm?

lower than the|v,) anthracene—He state. SimilarlyBY is

99.8%|v,;0)_ but has vibrational energy-1 cm * above
that of |v,). Third, there are state$type three”) that have
significant contributions from more than one Hg4)/(35)

function. Two such states aréA§ and 7A; .

|4v,;0) and|3v,;v,) have zeroth-order energies about 0.1
cm !apart and can couple with one another according to the
selection rules above. The same situation applig® 1év,)

and| vy;3vy). The coupling gives rise to the four, type-three
states &, 7A;, 3A7, and 4A7], each of which is an ad-
mixture of the four product states.

The source of the difference between these three classes
of (1|1) states relates to the magnitude of off-diagonal matrixvi. CONCLUSION

elements oﬁ'lz in the basis of the anthracene—He product
states of Eq(33). Expressing a general such matrix element
as

(LVX,MVy,NvZ;L’VX,M'Vy,N’VZ|:|'12||VX,mVy,nvz;

|’Vx,m’vy,n'vz> (36)

one can readily show from Eq35 and knowledge of
harmonic-oscillator matrix elements that it will generally be
appreciable in just three case® when |I—L|=|I"—L’|
=1, (M=—M)=(mM-=M')=(n—=N)=(n"—N")=0; (b)
when |m—M|=|m'—=M’|=1, (I-L)=(I"-L")=(n—N)
=(n’"—N’)=0; and (c) when [n—N|=|n"—N’|=1, (I
-L)=—({"-L")=(m—-M)=(m'-M')=0. A type-one

We have presented expressions for the intermolecular
kinetic-energy operators of solute—solvemiusters of the
type B—A,, where A is an atom or a molecule and B is a
molecule. The operators are expressed in terms of coordi-
nates referred to a body-fixed frame that is embedded in the
B moiety. As such, they are valuable in intermolecular level-
structure calculations involving clusters wherdin:A—B in-
teractions tend to dominate over A—A interactions andior
B is significantly larger than A. As an illustration of the
application of the results we have performed 6D variational
calculations of the intermolecular states of the
anthracene—He (1/1) isomer for the IPS of Heidenreich
et al* We have shown that these states can be readily as-
signed in terms of products of anthracenelifgermolecu-

state corresponds to a product state that is not nearby iy eigenfunctions, assignments that are especially transpar-
zeroth-order energy to any other such state that can satisfnt given the form of the intermolecular Hamiltonian

these approximate selection rules. As a result the producgmmoyed_ Finally, we have outlined a procedure that sub-

state itself is essentially @|1) eigenstate, and its vibrational
energy is very close to its zeroth-ord@nthracene—Heen-
ergy. Going back to the examples of the type-one stafgs 2
and 1A7, |vy;v,) is the product state closest in energy to
|2v,;0) and its degenerate partnfd;2v,) that can also
couple with the latter two according to the selection rules

above. However, it is 2.3 cit higher in energy, a separation A

that apparently is too large to allow for effective coupling.
The upshot is that the two symmetry-adapted combination
of [2v,;0) and|0;2v,) are(1|1) eigenstates with vibrational

stantially decreases the cost of calculations of intermolecular
states in B—A clusters containing subsets of A moieties that
do not interact appreciably with one another. We have dem-
onstrated the application of this procedure in calculations on
the anthracene—He1|1) isomer.
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