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Real-time linear response for time-dependent density-functional theory
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We present a linear-response approach for time-dependent density-functional theories using
time-adiabatic functionals. The resulting theory can be performed both in the time and in the
frequency domain. The derivation considers an impulsive perturbation after which the Kohn—Sham
orbitals develop in time autonomously. The equation describing the evolution is not strictly linear in
the wave function representation. Only after going into a symplectic real-spinor representation does
the linearity make itself explicit. For performing the numerical integration of the resulting equations,
yielding the linear response in time, we develop a modified Chebyshev expansion approach. The
frequency domain is easily accessible as well by changing the coefficients of the Chebyshev
polynomial, yielding the expansion of a formal symplectic Green’s operato20@4 American
Institute of Physics.[DOI: 10.1063/1.1808412

I. INTRODUCTION Il. THEORY

The use of time-dependent density-functional theoryA' Generalities
(TDDFT) within linear responséLR) theory is one of the Consider N electrons in thei_r singlet _ground _state. This
most robust and accurate methods for determining excitatiofround state can be treateﬂ using dtzarjsny-_funct!onal theory,
energies and properties of molecule¥ The application of Where the densityig(r) =23 [ ¢(r)|* is written in terms
LR within TDDFT is usually based on a frequency domain©f the N normalized Kohn—Sham Qrb|tals which are solu-
framework, similar to the random-phase approximation, ané'onS of the Kohn—Sham equations:
is considered the method of choice. There has not been a Hod®k(r)=exp(r), (1)
time-dependent alternative suggested, as far as we know, exhere Ho=K+uv[no](r) is the Kohn—Sham Hamiltonian.
cept for a solution of the exact time-dependent densityHerev[Nn](r)=ve.(r)+vy[n](r)+v4[n](r) is the Kohn-
functional equations with a weak perturbat3rt>~1’ The  Sham potential composed of the external, Hartree, and
latter method is very slow as the equations are nonlineaexchange-correlation potential8Ve often suppress the ref-
Linear equation formulation benefits from the availability of erence to the dependence of the potentiabuppose that at
efficient Chebyshev methods developed for molecular quarfime t=0 the external potential is subject to a impulsive
tum dynamicg®1° which does not work well for nonlinear time-dependent perturbatigwith 72=1):
problem. V(r,t)=uv(r)+ n\(r)s(t), (2)
~ Inthis paper we develop a time-dependent approach fQfhere 5 is a small parameter andr) is a spatial function
linear response. Instead of the sinusoidal perturbation usegleferred to below as the dipole function, although it could be
for the frequency LR, we use an impulsiv&function) per-  quite general The Runge—Gross theory assumes that there
turbation. The resulting equations assume the form of lineagxists(and proves uniqueness) @ time-dependent exchange
Schralinger-like equations for theerturbed orbitalsAll the  correlation potentialv,[n](r,t) with which the time-
LR information about system is obtained from the time-dependent density can be expressed axr,t)
dependent propagation. The spectrum, if needed, can be ob=23}_ 4| #(r,t)|?, where
tained directly; for example, by Fourier transforming. The (1,00 = (1), 3

linearization in time potentially allows us to “watch” the . . . .
. P : y. . . and the time-dependent orbitals obey the following equations
processes, obtaining useful insight, not available in the fre-

. i - ~of motion:

guency domain. It has an additional advantage by allowing a _

host of methods developed originally for the usual linear i (r,t)=H(r,t)=[K+V(r,t) ] (r,t), (4)
Schralinger equation, including approaches for obtainingwhere we introduce the Hamiltonian, which, we recall, de-
very efficiently spectra from short-time propagafioft (fil-  pends on the wave function through its dependence on the
ter diagonalizatioh In this paper we first derive the method- Kohn—Sham potentialso v=v[n],H=H[n]). Note that

ology and then exemplify for clampdftozen nuclei. there is no problem with the use ofsefunction pulse even if
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the functional is adiabatic, so that formally it requires This form, wherelL . (r,r’) is time independent, is strictly
smooth time variation in the system. The reason is the use aforrect only when the functional is adiabatic, i.e[,n]
a linear response, which makes the system linear. Essentially (r,t) =v[n(t)](r), depending only on the present density
by applying a weaks-function pulse and then Fourier trans- and not on its history. This is the case with most potentials
forming the results, we get exactly the same reduifsto a  employed nowadays in TDDFT, and should carry over to
trivial frequency-dependent normalization constatitat  current-dependent functionals.
would have been obtained if we were to apply a pulse made
of a smooth envelope function. If we were to derive the
formalism more strictly, we would need to apply a smooth . .

. . . B. Practical evolution
pulse of an arbitrary center frequency and then linearize the

evolution, but the results would be the saffier linear re- Despite the existence of an explicit definitionlofn Eq.
sponse onlyas those from a weakfunction pulse. (12), this equation should not be used in practical calcula-
Linear-response theory can be obtained by consideringons as it is extremely expensive numerically. We derive the
only the first-order changes in the orbitals: practical equations in two stages, the first employing sepa-
 ieut rately the real and imaginary parts, and then an even simpler
Plr ) =€ KLy + p(r 1) ) version, which employs complex algebra.

The parametey is the same as that in ER). The normal- ~ The starting point is to note that we can define directly
ized response of the orbital ig(r,t) and the linear response

density is [Lv]k(rrt)zl(r!t)d)k(r)! (13)
N where
(=272 D{m(r,)+m(r,H)*}, (6) 1
k=1 [(r,t)=lim =[v[n+»ny](r,t)—ov[n](r,t)]. (14
where g0
PN1=N—ng, From Eq.(11) it is immediately evident that when operating

on a vector of real-valued functioribis operator is linear
_ ) (It turns out, as we will show in a future publication, that this
nO_ZEk: |6ud* @) is alsopositive definite However, when operating ocom-
plexvalued functions this operator is not linear because evi-
The equation of motion fow(r,t) att>0 is derived by  gently, for v real, L(iv)#iLv. There is a very clear reason
using Eq.(5) in Eq. (4). The existence of the perturbation is for that. In essence, a purely imaginardoes not change the
manifest in noting that immediately after the perturbationgensity (to the first order, which we consideiust like an

(formally at “t=0"") y4(0")=[1—i7\(r)]¢y, Or addition of a small imaginary part to a real number does not
n(Ft=0)=—iN(r) dy(r). ®) change, to first o_rder, its amplitude. However, a reaoes
change the density.
The equations obeyed byare obtained by plugging E¢5) Yet, we can go to a representation in which everythiag
into Eqg. (4) and keeping only first order im: linear, by working with purely real functions, the real and

. _ _ imaginary part of the wave functiofremember that the
H(r,0=(Ho=emdr,t) imaginary part of a function is realFormally, this separa-
+ 5 Ho[ng+ 7ny](r,t) —ve(r)}eu(r), (9)  tion into real and imaginary parts;}=»’+iv”, is a “sym-

lectic representation of quantum mechanié3.From Eq.
wherevo(r)=v[ng](r),Ho=H[ny]. We now show how the ?10) Ic rep : quantu ' q

last (nonhomogeneoliderm can be represented as a linear
operator acting on the unknown A shorthand notation is v(r,t)=(Ho— ) vi(r,t),

(1,0 =(Ho— &) mi(r,) +[L](r,b), (10) 1) = — (Hom e v (r0)— (L W(r), (15)

wheree =dia ,£s,...;. The operatot. operates on the vec- . . L
e deyes.} P b or, ignoring the indices,

tor of functions{»}k_, in the following form:

[Lo(r.)]k= 7" Holno+ nnal(r.H) —vo(r)} di(r) % ”,,) :A( V) (16
14 14
solnl(r,t) '
=¢k(f)f Wnl(r Hdr where
N O HO &
=42 | Ly (r,r)v(r',tydr’, 11 A= —(Ho—e)-L 0 J 10
K'=1
where The operatoA is linear on the space of real vector functions.
) Evidently, it is nonsymmetric, but this by itself does not pre-
" ov[n](r , clude using any of the standard computational approaches of
Liae (1,17) = (1) sn(r’) P (7). (12 quantum mechanics.
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Equations(16) and(17), together with the definitions of l _ A

L [Egs.(13) and(14)] are sufficient to calculate the action of (mE( ¢ :Tm<K)

A. However, it is interesting that there is an even simpler m

shortcut, where the action of the quasi-Chebyshev polynomials,

V,) (Rey =costimcosh Y(A/A)] is defined through

V" Im~y

Z) , (25
0

A , (18

where gm:KAgm—l+§m—21 (26)
1 ) and
v= G[H[no"‘ (v ][ ¢+ n(v' +iv")]-Hep], (19

!

v 1
o . - Zo=Co=\ n]| » =—Alo.
and where the calculation is taken in the limit of weak per- 0=4o (v )O L=y Ado

turbation (p—0). This is the form we used in practicgt
may seem that this equation can be derived immediately, by 7, A 27)

simply writing H as a complex function ap+ »v; however, CAAT
there are complications associated with the factthég also

a function ofv*, so that the longer derivation is necessary. Here,A is a numerical parameter, conveniently taken to be a

typical half-width of the Hamiltonian, as usual in Chebyshev

expansion.
The time-dependent response of the orbitals is readily
C. Time form then
The formal evolution of the perturbation in time is , .
, , (1= 72 In(tA)LE(r R +Hgnr k], (29
14
" :eAt ml o (20)
t 0 so that the modified density is

where the initial vector is

y 0 ny(r, =2 In(tA)ne(r),

V”)OZ(_)\d) . (21)

Interestingly, this leads to the following form for the total nm(r)=4; A1) (1K), (29)
dipole, using Eq(6) and employing an obvious bra-ket no- )
tation: while for the dipole,
1 0 =

MEJ n (r,t))\(r)dr:4<)\¢ 0 eAt(Mﬁ > (22 ,u(t)—%: In(tA)Ry,, (30
which looks very much like a regular correlation function, where the residues are
except that the order of the zero and nonzero terms in the bra ,
and the ket is switched. Note that this expression involves Rm:4<7\¢ 0 ng> =4f > MO di(r) ¢ kodr.
purely real algebra. {m K

The complex perturbation as a function of time is then, (31)

in symbolic notation, Similar residues can be defined for expectation values of

other operators.

vi=v' +iv=(1 1) (23

"

t
The exponential can be evaluated by any standard iterati
approach in which one appliés repeatedly(Note that it is
less suitable to use a split-operator appréashceA is not The equations can be readily extended to a frequency
evaluated here explicitly but is only defined in terms of itsrealm. Formally(ignoring orbital indices
action on a vector.The most common iterative approaches

are Chebyshev expansiénand Lanczos methods, and we V"":f e(iW*“)‘vtdtzf eiw=-a)t(q i)eAt(V”
will discuss here the Chebyshev approaeimich has here a v
slightly unfamiliar form sinceA replaces the usuatiH
term, i.e., has the-i implicitly):

VB. Frequency form

!

dt, (32
0

wheree™ “! is a convergence factor, such that

/ — | (1 i)erttiw-at V”) dt
)| = (2= 6m0)InltA) L, (24) T f( : Yo
0 m
where(,, are vectors that are obtained by a Chebyshev-like =(1 i);( VH) ] (33
iterative operation: a—lo—AlV/,
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The operator (1)[1/(ea—iw—A)] can be identified there- 3000
fore as a Green's functiolG(w) for the linear-response 2
equations. The relevant equation for the dipole moment is § 2500 1
w@=4re 0= =R ng) |- B
()
The Chebyshev expansion for the dipole is very simple: § 1000 1
£ 500
m(w)=42 an(®)Ry, @ 7
m [ 7] 0 B
o]
wherg*2° -

am(w)=(2—6mo)J eW=aty (tA)dt

(2= 8mo)i™ ™t . 1 .
=mexr{—lmcos (w—ia—A)].
(36)
Similarly,
Pal1K)= 72 an(@)[4n(r k) +1Z0(r k). (37)

Ill. RESULTS

We simulated the dipole response using E8S), (31),
(25), (18), and(19). The system was a jelliurftonstant posi-
tive density ellipsoid on a grid with & 8X 8 points. The
grid spacing was 2d&,, and the Jellium radii in thg, y, and

z directions were 5.88, 6.47, and 7.06 Bohrs, respectively.

0 2 4 6 8 10 12 14 16
Excitation energy (eV)

FIG. 1. The dipole spectrum for a metalligellium) shell of densityn
=0.008&3. The solid line shows the result of the Fourier transformed spec-
trum directly from the full TD Kohn—Sham equations, and the dotted line
shows the results of the linearized Chebyshev propagation.

Performancewise, the use of a linear propagé@dreby-
shev hergmakes the approach much more efficient than the
original time-dependent propagation; for comparison, for a
total time propagatiom, we needTA Hamiltonian opera-
tion, or one Hamiltonian operation perAl#+0.3 a.u.; in a
nonoptimized Runge—Kutta we ran, we needed at least 100
times more Hamiltonian operations. As far at the spectrum,
the resolution needed to get a width @fis easily shown to
be about5-10A/«, leading to about 3000 Hamiltonian op-
erators in our case.

The numerical effort may be reduced even further once

The jellium density was 0.008 841, and it was smoothed the filter diagonalization or other signal processing ap-
at the edges using a Fermi-Dirac function with a width of 0.5proaches are used, as will be studied in a future work.

Bohr. The total jellium charge was 1@@&nd a total of eight

One drawback of this algorithm which we did not dis-

electrong(four orbitalg were used, so that the overall system cuss is runoff solutions. Specifically, the time-dependent lin-
is not neutral. The length of each Chebyshev vector was thgar response equation is non-Hermitian, and therefore the
number of grid points times the number of orbitals, i.e.,ejgenvalues may have nonzero imaginary values, leading to

83x 4=2048.

damped and run-off solutions. This is an intrinsic problem of

For the simulation we used =3 a.u. Further savings |inear response; we did not encounter this problem here, but
could have been obtained if we were to use also a shift of theven when it exists the spectra can be still calculated directly

A operator, but no shift was applied here.

Figure 1 shows the dipole response of this simple sys-

using Chebyshev or Lanczos methdt$>
We note that previous work by Kohet all’ have also

tem, which is essentially a plasmon resonance, using thgnalyzed the relation between the time-dependent approach
linear-response equations enumerated above, and comparggd the formal Hamiltonian of the system in the linear re-
with a simple Runge—Kutta calculation of the response. Thgponse regime, and the use of a weak perturbation to extract

agreement is excellent.

the spectra has been done by several grotips*’All those

The results were stable with respect to the numericalyorks have used, however, time-dependent methods appro-

parametery within a more than six orders of magnitude.

IV. SUMMARY AND DISCUSSION

priate for time-dependent Hamiltoniafsost usually split-
operator methodsThe key point distinguishing this paper is
that we have shown that it is possible to use methods of
time-independent Hamiltonians to extract the time-dependent

We have presented a formalism of LR within adiabaticorbitals. In fact, in an upcoming work we show that with this
TDDFT with which a TD picture of the electronic response linear-response reduction we can use the extremely efficient
can be calculated. This formalism is an efficient alternativeQMR approach to extract spectra with a minimal number of
for LR calculations in the frequency domain, particularly if Hamiltonian applications, even though the original func-
the underlying electronic basis is very large, like a planetional is nonlinear; this also avoids the problem of run-off

wave or grid. With the advent of attosecond laser put§e€

the TD picture may reveal an interesting wave packet dy-

namics which is hidden in the frequency regime.

solutions.
Finally, note that the formalism was developed for a
single determinant. However, it is valid for more general
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