HTML AESTRACT * LINKEES

THE JOURNAL OF CHEMICAL PHYSICSL122 054106 (2009

Finite bias conductance of an Anderson level: A source-Liouville
Hartree—Fock study
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We address the problem of stationary conductance through an Anderson spin-degenerate level at
finite bias. Just as in the Anderson solution, for a finite bias in parameter @gpasggate voltage,
interaction constant, and the couplings to the IgadBere exist spin-polarized and
non-spin-polarized regions. The transition curve between them is found analytically for the case of
symmetric coupling to the left and right leads. We approach the problem by a non-Markovian
source-Liouville equation where the two-body interaction self-energies are taken in the Hartree—
Fock approximation. €2005 American Institute of Physic§DOI: 10.1063/1.1835261

I. INTRODUCTION which the level is split only when it is close to one of the

) S chemical potentials in the leads, but not is in between.
Spontaneous spin polarization in quantum systems con-

ducting coherent currents has recently been experimentally
observed:*2 This phenomenon is an important issue for
Spintronics, since it may open a possibility to control the!l- FORMALISM
spin of a single electron by voltage bias and gate voltage.
Apart from this, the theory of this effect attracts recentlyt
; 3-19 : . em
much interest>1° Successful explanation of this effect has
been obtained within, e.g., the local spin density 1
; i l4-16 ~ A~ S ~on
apprquaﬂorﬁ L . . sz En‘ﬂi‘/’n—kz 2 ‘pll/lruklmn(/fml/fn
Since the study of realistic systems is a complicated n tkmn
problem, some insight on the physics underlying the sponta-

We start with defining the Hamiltonian for the total sys-
(central systent leads) for a general multilevel case,

neous spin-polarization phenomenon can be taken from the + D [EatVa(O)IFAFA+ Y, (Gnadhifa+H.C).
study of the simplest system, i.e., the Anderson spin- ACa n.A

degenerate level. The equilibrium case of an Anderson level (1)
immersed into a reservoir of free electrons is well studied.

On a Hartree—Fock levélhe Anderson solution Ref. 20the Here i, is the electron destruction operator in statef

action constant is large enough. At sufficiently low temperathe two-body interaction potential in the chosen basis which
tures this local spin is quenched by surrounding electrongpey24

due to the Kondo effedt The Kondo effect, however, dis-

appears at higher temperatutés. — Uu. —U* @)

The nonequilibrium case of a conducting Anderson Kimn Kinm™ = nmik:
”?Ode' \7'\'%3 studied mos_tly at differentiir |_nf|n|tely ?”.‘a" . FA’s are the electron destruction operators in the leAdis,
biasest’'® Some attention has been paid to a finite bias " . .

an index running over all the quantum states in all the leads

9,22 ; ;o ;
caset®?e.g., it was shown that a finite bias can destroy theWhich are labeled by a parameterL,R, E, is the energy

Kondo screening of the spin. However, the entire picture on f stateA, V,(t) is the electrostatic potential in lead and

what is happening to the Anderson level at finite biases is noﬁnally gua’s are the couplingtunneling constants.

yet clear. Therefore, it is. h'lghly desirable to possess a solu- The Liouville-type equation for one-particle density ma-
tion, analogous to the original Anderson solution, for a geny

eral case of finite bias conductance through an Anderson

level. In this paper we present such an analytical solution. At

This solution may be useful for further study of spin polar-  P(D=pi()=( (V)i (1)), (3
ization in a conducting quantum mesoscopic system, includ-

ing the study of the Kondo effect at finite biases. The mainunder the assumption that the system is weakly coupled to
result is that we find two regimes of the conductance: thdhe leads has the following foriisee Ref. 23 for details
regime of a small biad)<U,, Uy=1'/2v3, whereU is the

bias andl is the width of the level, when the leads splitthe ~ p=—i[hp—ph']+D, (4)
level together and the spin polarization arises just as in the

Anderson solution; and the regime of large bids;Ug, in where
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1 1
(N)sy(1)=Exprg()+ 5 2 Usimniian(1) 320 Uity =2 El(pny(D),
+% dt'z;m(t,t’)pmn(t’) _Z Pxnml(t)Ulmny 2 Pxn(t)'—'ny(t)

n
_ir~a ’
X (=G, (1. 1), and that it is a functional of the one-particle density matrix at
the same momeritonly,

1
(Ph) (D)= pyy(DE,+ = > p& (Ui
PRI g g P mny EOO=EL{p()}im)-

+> | dt’ (Gt £)pmn(t)SE,(',1), Tr_le retarded Green function now is the solution of the
mn equation
5
(t)E dt’ ALt )na(t), . 9 f gy
Dy A i——E,|GL(t,t")— > B (DG (t,t")
ot y ™ my
AR(tt) 2 [Srm(Lt )Gt 1) —f dt" X S (L) G (t7,t)
m
— Gl (LI D], = Byt )Gl (' +07 1) =—18,,. @
Here the tunneling self-energies are defined as After choosing an approximate form of the two-body
self-energy Eq94) and(7) become closed and can be propa-
SO ) =2 SIBAL), gated numerically.
A As in Ref. 23, we turn to the weak coupling limit so that
E;(ya) At,t') = ngGr(a (t,t') Gy 6) the tunneling sel_f-energies b_e_come diagonal, and we assume
that the reservoirs are sufficiently “homogeneous” on the
where energy scale considered. These assumptions result in
t AP - !
e;a,t'):—ie(t—t')exp( Bt [ dt”va(t”))r S~ (ABFIT2) 5(t—t') 3y, ®
t!
where AE, is the shift of thex-level energy and’, is the
Ga(t',H)=[Gx(t,t")]* coupllng rate to all the reservoir,,== I'¢, whereI'¢

a 2 _
are the retarded and advanced Green’s functions of reservoir 2mo (EX)|gX aBy |# s the coupling rate of levek to res

level A, with (in general time-dependenoccupation de- ervoir_a and a"‘(E_x) is the density of states of the corre-
noted byn,(t). We also define sponding reservoir at level enerdy, .

- - - - Finally, the proposed set of equations takes the form
PELAD = (IO ) I(8) Pl)) ¥, the prop g

as the two-particle density matrix, and p=—i[hp—ph']+D, 9
(a) ' ~
G)r(y (t.t) h= 5xyEx+E;y(t),
is the dressed, i.e., exact, retardadvanceflGreen function
of the central system. _ j A
D, (t)= dt’ AL (L, t)na(t’
Equation(4) is not closed since the evolution of the one- (1) ; ( A,

particle density matrix depends on the two-particle density
matrix. This is due to the fact that the two-body interaction
leads to the so-called Bogoliubov chain, i.e., an infinite set of
equations where the time evolution of Blparticle density

AR =D [SEALE)GE(L, 1)
A

matrix depends on arN(+1)-particle density matrix. In or- — G (Lt)ISAM )],

der to obtain a closed system of equations one has to truncate .

the Bogollub(_)v chalr_1 Qt some level by factor_|zmg th_e many- Gl (tt)=—iTexp —i j de'hin) | (10)
particle density matrix into a product of density matrices of a y t/

. . Xy
lesser number of particles. The easiest and most common

way to arrive at a tractable system of equations is to factorize\/hereﬁxz E,+AE,—il',/2 are the levels’ energies renor-
the two-particle density matrix by introducing two-body in- malized with respect to the interaction with the reservoirs
teraction self-energies. We do it in the spirit of the time-and T denotes chronological ordering.

dependent Hartree—Fock approximation, i.e., by assuming One of the possible ways to construct a closed system of
that the two-particle self-energy is an on-time operatorequations is to use a time-dependent Hartee—Fock factoriza-
E(t,t") < E(t)S8(t—t') so that tion of the two-particle correlation function,
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@ y=(aT O FT O Bt Dt independent and the electrostatic potentials can be absorbed
wayz( )=l Wy( V(D) into chemical potentials in the leads, which we define.as
~ pw 1) Pxy() = px 1) puy(1). and uR.

Due to the fermion symmetry of the interaction potential The resulting equations for the occupations take the form

2) the two terms give equal results and the self-energy be-
@ give eq OV be  —f(ny), ny=f(ny),

comes
a @ rr2
= =22 1= U t). 11 = e
W(O=E5(0=2 Usimypmi(t) (1) =2 | 4B e 1727
I1l. A SINGLE LEVEL BETWEEN TWO LEADS =1 E K cot*1(277un—,u"‘/(l“/2)), (12

a=L,R
Now we turn to a spin-degenerate Anderson level. The
energy of the level, already renormalized with respect to inwherex*=T"%/T", k-+ «R=1. Equation(12) can be viewed
teraction with the leads, can always be set at zero. The cows a generalized Anderson model, suitable for a nonequilib-
pling rates of the level to the left and right leads are denotedium (current-carrying case of interaction with many reser-
asI'- andI'R, respectively [ =T"+T®). The two-body po- voirs with different chemical potentialg®.
tential must have, due to fermion symmetry, the Hubbard  Just as in the Anderson model, there are two regions in

form parameter space: spin-compensated and non-spin-
I compensated regions. It is convenient to introduce the di-
U= Euﬁlﬁz’ mensionless gate voltagg, defined as the average between

the chemical potentials in the leads with opposite sy,
where the subscripts 1 and 2 correspond to spin-up and spifi= — (#"+#")/T. (Recall that the level energy is fixed at

down statesf’s are the particle number operators, and weZ€0, SO that the shift in the leads’ energies is equivalent to
scale the two-body interaction constant B2 to get a di- the opposite shift of a level, i.e., to introduction of a gate

mensionless quantity. voltage) We also define the dimensionless voltage bias be-
From Eq.(11) one obtains two-body self-energies in the tween the leads, which equals the chemical potentials’ differ-
following form: ence,U=(u-—uF)/T.

The transition surface between these regions is derived
in the Appendix and is given for symmetric levek(R
=1/2) by Eqgs.(A4) and (A5).

The transition surface is given in Fig. 1, where it is pre-
One can always choose the direction of spin quantization isented as a family of curve¥,(u) on the gate-voltage
such a way that the one-particle density mafriis diagonal  interaction-constant plan&,—u, for different fixed values
at some instanty,. At all the following time momentst of the biasU. In the following we discuss the physics un-
>ty, the one-particle density matrix together with the two-derlying this formal solution. For simplicity we will discuss
body self-energies and consequently with the full retardedhe cases of small and large biases, respectively, in the limits
and advanced Green’s functions of the system will remairu>u,(U) andu,(U)<u<uy(U) [the threshold parameters
diagonal in these states’ indices basis. This implies that we,(U),u,(U) are defined by Eq9A6) and (A7)]. In these
can consider only diagonal elements of one-particle densitiimits the average population of each spin can be given as
matrix, i.e., the average states’ occupations(t)=(f;,)  [O(u-—&)+0(uR—¢&)]/2 (Ref. 25, where & is the

p2At)  —piAt)
—p21(t)  p1a(t)

Eik(t)zu .
ik

(t). “dressed”(i.e., accounting for two-body interactionsnergy
The equations fon,; andn, become of the sublevel.
, For a finite-width level to start feeling the chemical po-
N1(2)() = =Ty (1) tentials differencebias voltage the bias must exceed some
threshold value. This threshold value for bias voltage is
+f dt’dEg I*FE 102t )ng(t’), found in the Appendix to be equal tdy=1//3. We callU

>U, the large bias case whilg<<U, is the small bias case.
1 Consider first the case of small bisee Figs. &a)—(c)].
FEi(tt')=_Re ex%—i(E—i E)ﬂ—t') The small bias region can also be referred to as Anderson
region. The two chemical potentials, which are close enough
to each other, split the level in such a wdgig. 2(b)] that one
: of the states is occupied and is under both chemical poten-
tials, ny~1, while the other state, due to two-body interac-
The occupation number&éR(t) in the leads depend on tion, jumps above the chemical potentials and remains un-
the energy E) of the states in the leads and in general casgopulatedny~0. The average occupations behaves as in the
vary in time. These equations are valid for time-dependenéquilibrium case of equal chemical potentiglanderson
conductance. However, we are interested here in stationarpodel with a single reservoir with one chemical potential
conductance so that the leads’ occupation numbers are timmut there is still a bias in the system so that the current flows.

t
-i [ ar v - unae)
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10 Spin-coripansate region one of the states is beneath both chemical potentials,
vV regior whereas the upper one is in between them. Now the higher
g C\ level conducts electrons so that~1/2, while the lower one
0 . —— ——— is populatedn;~1 and is not involved in the conductance
~— process.
N \\\ Finally, with further decrease of the gate voltage both
o N states gdet under both ghemical potftlantialshso tI:]aththey are
- NN ——— "reglon occupied,n;=n,~1, and no current flows through the sys-
— ..3_? S&\&QQ\\ tem [Fig. 2h)].
——u=2 \%\\\ In the spin-compensated region the average populations
s U=4 \\\\\ of the spin-up and the spin-down states are the same,
Ll \&\ =n,, the system is not spin-polarized and spin-up and spin-
g SN down electrons are being transferred from one lead to the
.30 S~ other equally. In the non-spin-compensated region the system
0 2 u/rn? 6 8 spontaneously develops a spin-polarization#n,, and

conducts mostly electrons with some chosen spin direction.

FIG. 1. A family of transition curves between spin-compensated and nonACtua”y the system works as a spin-dioj&e.
spin-compensated solutions as a function of the gate voltage

(Vg)-interaction constantu) at different biased).
CONCLUSION

At sufficiently low temperatures the Kondo effect tends

In the large bias case the two well-separated chemicgl, quenching of spin-polarization in the Anderson level so
potentials of the two leads split the level separafeBe Figs. he validity of our results are restricted to temperatures
2(d)—-2(h)]. As soon as the gate voltage puts the level undegeater than Kondo temperature. However, that temperature
the upper chemical potential one of the states saturates A generally low, e.g., in Ref. 10 it was of order 1 K. Further-
quiring an average occupation~ 1/2 and starts conducting ore as shown in Ref. 20 the voltage bias destroys the

current[Fig. 2(€)]. This average occupation corresponds t0xzndo resonance so that in the region of large biases our
the fluctuations between the occupied and unoccupied |°Wesrimple treatment can still be physically valid.

state in the process of the so-called sequential electron tun-
neling from one lead to the other. The other state jumMps\ckNOWLEDGMENTS
above the potential byun;=u/2 and is not occupied,~0. _ _ _ _

With further decrease of the gate voltage the upper level The authors are grateful for discussions with Roi Baer.
also gets beneath the upper chemical potential, saturates, 1his work was supported by the NSF and the PRF.
=n,~1/2, and also starts conducting electrofig. 2(f)]. At
this point the spin-polarization disappears and both sublevel@PPENDIX
conduct currents equivalently. With further decreasevgf Here we derive an equation detailing the boundary be-
we again reach a spin-polarized regifffig. 2g)]. In this  tween spin-compensated and non-spin-compensated regions
in the space of the dimensionless parameters: gate voltage
Vg, voltage bias, U, and interaction constant

M =0 M = M .
a) el Vo b) ||.n-Z0 A On the boundary between spin-compensated and non-
7 n =1 N spin-compensated regions the occupations of the sublevels
7 are still equivalenth;=n,, and consequently one of the
equations determining the boundary is
_ _ d o n.n =0 _
) >7 LV, f(n=n, (A1)
n,n=1 |bv+uy where the functionf(n) is given in Eq.(12). The second
v necessary equation on the transition curve can be obtained by
2 differentiating Eq.(12),
e N0 Vru2 g =1/2[ af(n
iz IV, n,.n,=1/2[V +u/2 n__, (A2)
iV on
7 Equations(Al) and (A2) are an overdetermined system
of equations with respect to variabfe so that they deter-
a) - _ h) - - mine a surface in the system parameter space.
—1/2 V +u The equation for this surface can be obtained analyti-
—22;—-1 -yz—ju/z npnoTl [Vo+u cally in the case of a symmetric coupling to the leads, i.e.,
- Vﬁ ﬁ I''=TR «k“R=1/2. For the symmetric coupling to the leads

the sign of the bias gives only the direction of the current,

FIG. 2. (a—(c) Evolution of states populations and energies with decreasingbUt plays no role ' in th? average QCCUpations Of the' spin
gate voltage/, for small bias;(d)—(h) the same for the large bias. states. Therefore, it suffices to consider only positive biases.
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Equation(A2) reads For large biasU>U,, the transition curvai(V) is a

y 1 function with two minima and one local maximun between
_z —=1 (A3)  them at point(A6). The coordinates of the two minima are
27 < 1+(z+U) ’

where for convenience we introduced the additional variablei,(U)=4m(JU%+U?—U?),
z=2mun+V,. This equation can be solved with respect to
variablez. There are four such solutionsz™, +z~: U,(U)

i(\/Z\/U4+ U2-uz-1)

2 12y 1/2 VZ(U)= -
u u u 9
S<_ | 2 24l 2 2l 2 2
z 27_r+U 1_[(277 +4U (277 1” ] .
Ad u
(A4) +—> tan*l(\/zx/u4+ U2-uU?-1)=U))).
Substituting these solutions into E@\1), one arrives at 27 "%
the four different equations which determivg as a function (A7)
of u andU The boundary surface is given as
u u
Vg=— 5= ( 77 <+ _z tan Y(z7 == U)) (AB) K. J. Thomaset al, Phys. Rev. Lett77, 135(1996; Phys. Rev. B5S,
2 27T 4846(1998.
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