
Finite bias conductance of an Anderson level: A source-Liouville
Hartree–Fock study

Igor V. Ovchinnikov and Daniel Neuhauser
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

~Received 7 September 2004; accepted 29 October 2004; published online 19 January 2005!

We address the problem of stationary conductance through an Anderson spin-degenerate level at
finite bias. Just as in the Anderson solution, for a finite bias in parameter space~bias, gate voltage,
interaction constant, and the couplings to the leads! there exist spin-polarized and
non-spin-polarized regions. The transition curve between them is found analytically for the case of
symmetric coupling to the left and right leads. We approach the problem by a non-Markovian
source-Liouville equation where the two-body interaction self-energies are taken in the Hartree–
Fock approximation. ©2005 American Institute of Physics.@DOI: 10.1063/1.1835261#

I. INTRODUCTION

Spontaneous spin polarization in quantum systems con-
ducting coherent currents has recently been experimentally
observed.1–12 This phenomenon is an important issue for
Spintronics, since it may open a possibility to control the
spin of a single electron by voltage bias and gate voltage.
Apart from this, the theory of this effect attracts recently
much interest.13–19 Successful explanation of this effect has
been obtained within, e.g., the local spin density
approximation.14–16

Since the study of realistic systems is a complicated
problem, some insight on the physics underlying the sponta-
neous spin-polarization phenomenon can be taken from the
study of the simplest system, i.e., the Anderson spin-
degenerate level. The equilibrium case of an Anderson level
immersed into a reservoir of free electrons is well studied.
On a Hartree–Fock level~the Anderson solution Ref. 20!, the
level can develop a spin polarization if the two-body inter-
action constant is large enough. At sufficiently low tempera-
tures this local spin is quenched by surrounding electrons
due to the Kondo effect.21 The Kondo effect, however, dis-
appears at higher temperatures.10

The nonequilibrium case of a conducting Anderson
model was studied mostly at differential~or infinitely small!
biases.17,18 Some attention has been paid to a finite bias
case,19,22 e.g., it was shown that a finite bias can destroy the
Kondo screening of the spin. However, the entire picture on
what is happening to the Anderson level at finite biases is not
yet clear. Therefore, it is highly desirable to possess a solu-
tion, analogous to the original Anderson solution, for a gen-
eral case of finite bias conductance through an Anderson
level. In this paper we present such an analytical solution.
This solution may be useful for further study of spin polar-
ization in a conducting quantum mesoscopic system, includ-
ing the study of the Kondo effect at finite biases. The main
result is that we find two regimes of the conductance: the
regime of a small bias,U,U0 , U05G/2), whereU is the
bias andG is the width of the level, when the leads split the
level together and the spin polarization arises just as in the
Anderson solution; and the regime of large bias,U.U0 , in

which the level is split only when it is close to one of the
chemical potentials in the leads, but not is in between.

II. FORMALISM

We start with defining the Hamiltonian for the total sys-
tem ~central system1 leads) for a general multilevel case,
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Enĉn
†ĉn1

1

4 (
lkmn

ĉk
†ĉ l

†Uklmnĉmĉn
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Hereĉn is the electron destruction operator in staten of
the central system,En is ‘‘bare’’ energy of staten, Uklmn is
the two-body interaction potential in the chosen basis which
obeys24

Uklmn52Uklnm5Unmlk* , ~2!

r̂ A’s are the electron destruction operators in the leads,A is
an index running over all the quantum states in all the leads
which are labeled by a parametera5L,R, EA is the energy
of stateA, Va(t) is the electrostatic potential in leada, and
finally gnA’s are the coupling~tunneling! constants.

The Liouville-type equation for one-particle density ma-
trix

r~ t ![r lk~ t !5^ĉk
†~ t !ĉ l~ t !&, ~3!

under the assumption that the system is weakly coupled to
the leads has the following form~see Ref. 23 for details!:

ṙ52 i @hr2rh†#1D, ~4!

where
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Here the tunneling self-energies are defined as
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are the retarded and advanced Green’s functions of reservoir
level A, with ~in general time-dependent! occupation de-
noted bynA(t). We also define

rwxyz
(2) (t)5^ĉz

†(t)ĉy
†(t)ĉx(t)ĉw(t)&

as the two-particle density matrix, and

Gxy
r (a)~ t,t8!

is the dressed, i.e., exact, retarded~advanced! Green function
of the central system.

Equation~4! is not closed since the evolution of the one-
particle density matrix depends on the two-particle density
matrix. This is due to the fact that the two-body interaction
leads to the so-called Bogoliubov chain, i.e., an infinite set of
equations where the time evolution of anN-particle density
matrix depends on an (N11)-particle density matrix. In or-
der to obtain a closed system of equations one has to truncate
the Bogoliubov chain at some level by factorizing the many-
particle density matrix into a product of density matrices of a
lesser number of particles. The easiest and most common
way to arrive at a tractable system of equations is to factorize
the two-particle density matrix by introducing two-body in-
teraction self-energies. We do it in the spirit of the time-
dependent Hartree–Fock approximation, i.e., by assuming
that the two-particle self-energy is an on-time operator
Ĵ(t,t8)}Ĵ(t)d(t2t8) so that
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and that it is a functional of the one-particle density matrix at
the same momentt only,
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The retarded Green function now is the solution of the
equation
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After choosing an approximate form of the two-body
self-energy Eqs.~4! and~7! become closed and can be propa-
gated numerically.

As in Ref. 23, we turn to the weak coupling limit so that
the tunneling self-energies become diagonal, and we assume
that the reservoirs are sufficiently ‘‘homogeneous’’ on the
energy scale considered. These assumptions result in

Sxy
r (a)~ t,t8!'~DEx7 iGx/2!d~ t2t8!dxy , ~8!

whereDEx is the shift of thex-level energy andGx is the
coupling rate to all the reservoirs,Gx5(aGx

a , where Gx
a

52psa(Ex)ugx,aEx
u2 is the coupling rate of levelx to res-

ervoir a and sa(Ex) is the density of states of the corre-
sponding reservoir at level energyEx .

Finally, the proposed set of equations takes the form

ṙ52 i @hr2rh†#1D, ~9!

h5dxyẼx1Jxy
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where Ẽx5Ex1DEx2 iGx/2 are the levels’ energies renor-
malized with respect to the interaction with the reservoirs
andT denotes chronological ordering.

One of the possible ways to construct a closed system of
equations is to use a time-dependent Hartee–Fock factoriza-
tion of the two-particle correlation function,
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Due to the fermion symmetry of the interaction potential
~2! the two terms give equal results and the self-energy be-
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III. A SINGLE LEVEL BETWEEN TWO LEADS

Now we turn to a spin-degenerate Anderson level. The
energy of the level, already renormalized with respect to in-
teraction with the leads, can always be set at zero. The cou-
pling rates of the level to the left and right leads are denoted
asGL andGR, respectively (G5GL1GR). The two-body po-
tential must have, due to fermion symmetry, the Hubbard
form

Û5
G

2
un̂1n̂2 ,

where the subscripts 1 and 2 correspond to spin-up and spin-
down states,n̂’s are the particle number operators, and we
scale the two-body interaction constant byG/2 to get a di-
mensionless quantityu.

From Eq.~11! one obtains two-body self-energies in the
following form:

J ik~ t !5uF r22~ t ! 2r12~ t !

2r21~ t ! r11~ t !
G

ik

.

One can always choose the direction of spin quantization in
such a way that the one-particle density matrixr is diagonal
at some instantt0 . At all the following time moments,t
.t0 , the one-particle density matrix together with the two-
body self-energies and consequently with the full retarded
and advanced Green’s functions of the system will remain
diagonal in these states’ indices basis. This implies that we
can consider only diagonal elements of one-particle density
matrix, i.e., the average states’ occupationsn1,2(t)5^n̂1,2&
(t).

The equations forn1 andn2 become
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The occupation numbersnE

L,R(t) in the leads depend on
the energy (E) of the states in the leads and in general case
vary in time. These equations are valid for time-dependent
conductance. However, we are interested here in stationary
conductance so that the leads’ occupation numbers are time

independent and the electrostatic potentials can be absorbed
into chemical potentials in the leads, which we define asmL

andmR.
The resulting equations for the occupations take the form
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whereka5Ga/G, kL1kR51. Equation~12! can be viewed
as a generalized Anderson model, suitable for a nonequilib-
rium ~current-carrying! case of interaction with many reser-
voirs with different chemical potentialsma.

Just as in the Anderson model, there are two regions in
parameter space: spin-compensated and non-spin-
compensated regions. It is convenient to introduce the di-
mensionless gate voltageVg defined as the average between
the chemical potentials in the leads with opposite sign,Vg

52(mL1mR)/G. ~Recall that the level energy is fixed at
zero, so that the shift in the leads’ energies is equivalent to
the opposite shift of a level, i.e., to introduction of a gate
voltage.! We also define the dimensionless voltage bias be-
tween the leads, which equals the chemical potentials’ differ-
ence,U5(mL2mR)/G.

The transition surface between these regions is derived
in the Appendix and is given for symmetric level (kL,R

51/2) by Eqs.~A4! and ~A5!.
The transition surface is given in Fig. 1, where it is pre-

sented as a family of curvesVg(u) on the gate-voltage
interaction-constant plane,Vg2u, for different fixed values
of the biasU. In the following we discuss the physics un-
derlying this formal solution. For simplicity we will discuss
the cases of small and large biases, respectively, in the limits
u@u1(U) andu2(U)!u!u1(U) @the threshold parameters
u1(U),u2(U) are defined by Eqs.~A6! and ~A7!#. In these
limits the average population of each spin can be given as
@u(mL2«)1u(mR2«)#/2 ~Ref. 25!, where « is the
‘‘dressed’’~i.e., accounting for two-body interactions! energy
of the sublevel.

For a finite-width level to start feeling the chemical po-
tentials difference~bias voltage! the bias must exceed some
threshold value. This threshold value for bias voltage is
found in the Appendix to be equal toU051/). We call U
.U0 the large bias case whileU,U0 is the small bias case.

Consider first the case of small bias@see Figs. 2~a!–~c!#.
The small bias region can also be referred to as Anderson
region. The two chemical potentials, which are close enough
to each other, split the level in such a way@Fig. 2~b!# that one
of the states is occupied and is under both chemical poten-
tials, n1'1, while the other state, due to two-body interac-
tion, jumps above the chemical potentials and remains un-
populated,n0'0. The average occupations behaves as in the
equilibrium case of equal chemical potentials~Anderson
model with a single reservoir with one chemical potential!,
but there is still a bias in the system so that the current flows.
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In the large bias case the two well-separated chemical
potentials of the two leads split the level separately@see Figs.
2~d!–2~h!#. As soon as the gate voltage puts the level under
the upper chemical potential one of the states saturates ac-
quiring an average occupationn1'1/2 and starts conducting
current @Fig. 2~e!#. This average occupation corresponds to
the fluctuations between the occupied and unoccupied lower
state in the process of the so-called sequential electron tun-
neling from one lead to the other. The other state jumps
above the potential byun15u/2 and is not occupiedn2'0.

With further decrease of the gate voltage the upper level
also gets beneath the upper chemical potential, saturates,n2

5n1'1/2, and also starts conducting electrons@Fig. 2~f!#. At
this point the spin-polarization disappears and both sublevels
conduct currents equivalently. With further decrease ofVg

we again reach a spin-polarized region@Fig. 2~g!#. In this

region one of the states is beneath both chemical potentials,
whereas the upper one is in between them. Now the higher
level conducts electrons so thatn2'1/2, while the lower one
is populatedn1'1 and is not involved in the conductance
process.

Finally, with further decrease of the gate voltage both
states get under both chemical potentials so that they are
occupied,n15n2'1, and no current flows through the sys-
tem @Fig. 2~h!#.

In the spin-compensated region the average populations
of the spin-up and the spin-down states are the same,n1

5n2 , the system is not spin-polarized and spin-up and spin-
down electrons are being transferred from one lead to the
other equally. In the non-spin-compensated region the system
spontaneously develops a spin-polarization,n1Þn2 , and
conducts mostly electrons with some chosen spin direction.
Actually, the system works as a spin-diode.13

CONCLUSION

At sufficiently low temperatures the Kondo effect tends
to quenching of spin-polarization in the Anderson level so
the validity of our results are restricted to temperatures
greater than Kondo temperature. However, that temperature
is generally low, e.g., in Ref. 10 it was of order 1 K. Further-
more, as shown in Ref. 20 the voltage bias destroys the
Kondo resonance so that in the region of large biases our
simple treatment can still be physically valid.

ACKNOWLEDGMENTS

The authors are grateful for discussions with Roi Baer.
This work was supported by the NSF and the PRF.

APPENDIX

Here we derive an equation detailing the boundary be-
tween spin-compensated and non-spin-compensated regions
in the space of the dimensionless parameters: gate voltage
Vg , voltage bias, U, and interaction constantu.

On the boundary between spin-compensated and non-
spin-compensated regions the occupations of the sublevels
are still equivalent,n15n2 , and consequently one of the
equations determining the boundary is

f ~n!5n, ~A1!

where the functionf (n) is given in Eq.~12!. The second
necessary equation on the transition curve can be obtained by
differentiating Eq.~12!,

] f ~n!

]n
521. ~A2!

Equations~A1! and ~A2! are an overdetermined system
of equations with respect to variablen, so that they deter-
mine a surface in the system parameter space.

The equation for this surface can be obtained analyti-
cally in the case of a symmetric coupling to the leads, i.e.,
GL5GR,kL,R51/2. For the symmetric coupling to the leads
the sign of the bias gives only the direction of the current,
but plays no role in the average occupations of the spin
states. Therefore, it suffices to consider only positive biases.

FIG. 1. A family of transition curves between spin-compensated and non-
spin-compensated solutions as a function of the gate voltage
(Vg)-interaction constant (u) at different biasesU.

FIG. 2. ~a!–~c! Evolution of states populations and energies with decreasing
gate voltageVg for small bias;~d!–~h! the same for the large bias.
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Equation~A2! reads

u

2p (
6

1

11~z6U !2 51, ~A3!

where for convenience we introduced the additional variable
z52pun1Vg . This equation can be solved with respect to
variablez. There are four such solutions6z.,6z,:

z.,,5H u

2p
1U2216F S u

2p D 2

14U2S u

2p
21D G1/2J 1/2

.

~A4!

Substituting these solutions into Eq.~A1!, one arrives at
the four different equations which determineVg as a function
of u andU The boundary surface is given as

Vg52
u

2
6S z.,,1

u

2p (
6

tan21~z.,,6U ! D . ~A5!

Eqs. ~A5! and ~A4! are the exact analytical expressions
for the surface boundary between the spin-compensated and
non-spin-compensated regions. These equations determine
the four different, but connected, brunches of one boundary
surface. This surface is given in Fig. 1.

The two brunches corresponding to the two solutions of
Eq. ~A3!, 6z,, exist only atU.U0 , where the threshold
value of the bias isU051/), whereas the other two
brunches always exist. Accordingly, the forms of the curves
Vg(u) qualitatively differ before and after the threshold bias.
In the small bias case the transition curveu(Vg) @the inverse
function to the functionVg(u)] is a function with one mini-
mum at the point,

u1~U !5p~11U2!, Vg
1~U !52u1/2. ~A6!

This point corresponds to the smallest value of interac-
tion constant at which the spin-instability exist, and at which
the region of instability on the gate voltage scale shrinks to a
point.

The small bias case includes the case of zero bias, i.e.,
the original Anderson problem. The boundary of spin-
polarization instability is given for the Anderson solution as

Vg52
u

2
6FAu

p
211

u

p
tan21SAu

p
21D G .

This expression reproduces the known existence of
interaction-constant threshold in the Anderson solution,
uAnderson5u1uU505p.

For large bias,U.U0 , the transition curveu(Vg) is a
function with two minima and one local maximun between
them at point~A6!. The coordinates of the two minima are

u2~U !54p~AU41U22U2!,

Vg
2~U !52

u2~U !

2
6~A2AU41U22U221!

1
u

2p
(
6

tan21
„
A2AU41U22U221)6U))….

~A7!
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